30 research outputs found
Electron shuttle-mediated microbial Fe(III) reduction under alkaline conditions
Purpose: Extracellular Fe(III) reduction plays an important role in a variety of biogeochemical processes. Several mechanisms for microbial Fe(III) reduction in pH-neutral environments have been proposed, but pathways of microbial Fe(III) reduction within alkaline conditions have not been clearly identified. Alkaline soils are vastly distributed; thus, a better understanding of microbial Fe(III) reduction under alkaline conditions is of significance. The purpose of this study is to explore the dominant mechanism of bacterial iron reduction in alkaline environments. Materials and methods: We used antraquinone-2,6-disulfonate (AQDS) as a representative of quinone moities of humic substances and elemental sulfur and sulfate as sulfur species to investigate the potential role of humic substances and sulfur species in mediating microbial Fe(III) reduction in alkaline environments. We carried out thermodynamic calculations to predict the ability of bacteria to reduce Fe(III) (oxyhydr)oxides under alkaline conditions and the ability of AQDS and sulfur species to serve as electron acceptors for microbial anaerobic respiration in an assumed alkaline soil environments. A series of incubation experiments with two model dissimilatory metal reducing bacteria, Shewanella oneidensis MR-1 and Geobacter sulfurreducens PCA as well as mixed bacteria enriched from a soil were performed to confirm the contribution of AQDS and sulfur species to Fe(III) reduction under alkaline conditions. Results and discussion: Based on thermodynamic calculations, we predicted that, under alkaline conditions, the enzymatic reduction of Fe(III) (oxyhydr)oxides would be thermodynamically feasible but very weak. In our incubation experiments, the reduction of ferrihydrite by anaerobic cultures of Shewanella oneidensis MR-1, Geobacter sulfurreducens PCA or microbes enriched from a soil was significantly increased in the presence of S0 or AQDS. Notably, AQDS contributed more to promoting Fe(III) reduction as a soluble electron shuttle than S0 did under the alkaline conditions probably because of different mechanisms of microbial utilization of AQDS and S0. Conclusions: These results suggest that microbial reduction of Fe(III) (oxyhydr)oxides under alkaline conditions may proceed via a pathway mediated by electron shuttles such as AQDS and S0. Considering the high ability of electron shuttling and vast distribution of humic substances, we suggest that humic substance-mediated Fe(III) reduction may potentially be the dominant mechanism for Fe(III) reduction in alkaline environments
High-resolution structure of a type IV pilin from the metal-reducing bacterium Shewanella oneidensis
Short-term dexamethasone treatment transiently, but not permanently, attenuates fibrosis after acute-to-chronic kidney injury
Electroacupuncture at acupoint ST 37(Shangjuxu) improves function of the enteric nervous system in a novel mouse constipation model
The Relative Role of Soluble Guanylyl Cylase Dependent and Independent Pathways in Nitric Oxide Inhibition of Platelet Aggregation Under Flow
Cell-secreted Flavins Bound to Membrane Cytochromes Dictate Electron Transfer Reactions to Surfaces with Diverse Charge and pH
ACTH and cortisol responses to CRH in acute, subacute, and prolonged critical illness: a randomized, double-blind, placebo-controlled, crossover cohort study
Adolescents’ Conflict Resolution Styles Toward Mothers : The Role of Parenting and Personality
In the present research, we examined associations between contextual and individual factors and adolescents’ conflict resolution with mothers. In Study 1, we explored links between maternal responsiveness and psychological control and adolescent conflict resolution styles (positive problem solving, conflict engagement, withdrawal, and compliance) with two informants. In Study 2, we examined the unique contribution of adolescents’ personality above and beyond perceived parenting in the prediction of conflict resolution styles. Results of both studies indicated that responsiveness was related positively to problem solving and negatively to withdrawal. Psychological control was positively associated with destructive resolution styles. Study 2 indicated that extraversion predicted more problem solving and conflict engagement, and less withdrawal. Agreeableness predicted more problem solving and less conflict engagement. Finally, certain personality traits moderated associations between parenting and conflict resolution, indicating that some adolescents are more sensitive to these parenting dimensions than others
