1,221 research outputs found
Multi-temperature zone, droplet-based microreactor for increased temperature control in nanoparticle synthesis
Microreactors are an emerging technology for the controlled synthesis of nanoparticles. The Multi-Temperature zone Microreactor (MTM) described in this work utilizes thermally isolated heated and cooled regions for the purpose of separating nucleation and growth processes as well as to provide a platform for a systematic study on the effect of reaction conditions on nanoparticle synthesis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
The Diagnostic Potential of Transition Region Lines under-going Transient Ionization in Dynamic Events
We discuss the diagnostic potential of high cadence ultraviolet spectral data
when transient ionization is considered. For this we use high cadence UV
spectra taken during the impulsive phase of a solar flares (observed with
instruments on-board the Solar Maximum Mission) which showed excellent
correspondence with hard X-ray pulses. The ionization fraction of the
transition region ion O V and in particular the contribution function for the O
V 1371A line are computed within the Atomic Data and Analysis Structure, which
is a collection of fundamental and derived atomic data and codes which
manipulate them. Due to transient ionization, the O V 1371A line is enhanced in
the first fraction of a second with the peak in the line contribution function
occurring initially at a higher electron temperature than in ionization
equilibrium. The rise time and enhancement factor depend mostly on the electron
density. The fractional increase in the O V 1371A emissivity due to transient
ionization can reach a factor of 2--4 and can explain the fast response in the
line flux of transition regions ions during the impulsive phase of flares
solely as a result of transient ionization. This technique can be used to
diagnostic the electron temperature and density of solar flares observed with
the forth-coming Interface Region Imaging Spectrograph.Comment: 18 pages, 6 figure
Micronutrients: highlights and research challenges from the 1994-5 National Diet and Nutrition Survey of people aged 65 years and over
The aims of the National Diet and Nutrition Survey series are summarized, and the new National Diet and Nutrition Survey of people aged 65 years and over is explored, with particular emphasis on micronutrient intakes and status indices. Mean nutrient intakes were generally satisfactory for most micronutrients, but intakes of vitamin D, Mg, K and Cu were low. Intakes of vitamin D were far below the reference nutrient intake for people aged 65 years and over, and there was also biochemical evidence of vitamin D deficiency, for 8% of free-living and 37% of institution participants, attributed partly to limited exposure to sunlight. A substantial proportion of people living in institutions had inadequate biochemical status indices, notably for vitamin C, Fe and folate. Relationships between intake and status were close for vitamins. Mineral intakes did not correlate well with currently used status indices. Some intakes and indices, especially those of vitamin C, carotenoids, Na and K, were strongly correlated with socio-economic status and with north-south gradients in Britain. Future research challenges should address the functional and health significance of low intakes and sub-optimal biochemical indices for certain micronutrients, especially for people living in institutions; the shortcomings of mineral status indices especially as indicators of mineral intake; the social and geographical inequalities of micronutrient intakes and status, and why micronutrient status deteriorates with increasing age. The answers to these questions will help to define the characteristics of nutritional risk for older people in Britain, and to clarify future needs for education and intervention
Dynamics of ions in the selectivity filter of the KcsA channel
The statistical and dynamical properties of ions in the selectivity filter of the KcsA ion channel are considered on the basis of molecular dynamics (MD) simulations of the KcsA protein embedded in a lipid membrane surrounded by an ionic solution. A new approach to the derivation of a Brownian dynamics (BD) model of ion permeation through the filter is discussed, based on unbiased MD simulations. It is shown that depending on additional assumptions, ion’s dynamics can be described either by under-damped Langevin equation with constant damping and white noise or by Langevin equation with a fractional memory kernel. A comparison of the potential of the mean force derived from unbiased MD simulations with the potential produced by the umbrella sampling method demonstrates significant differences in these potentials. The origin of these differences is an open question that requires further clarifications
On the Interplay between the Evolvability and Network Robustness in an Evolutionary Biological Network: A Systems Biology Approach
In the evolutionary process, the random transmission and mutation of genes provide biological diversities for natural selection. In order to preserve functional phenotypes between generations, gene networks need to evolve robustly under the influence of random perturbations. Therefore, the robustness of the phenotype, in the evolutionary process, exerts a selection force on gene networks to keep network functions. However, gene networks need to adjust, by variations in genetic content, to generate phenotypes for new challenges in the network’s evolution, ie, the evolvability. Hence, there should be some interplay between the evolvability and network robustness in evolutionary gene networks. In this study, the interplay between the evolvability and network robustness of a gene network and a biochemical network is discussed from a nonlinear stochastic system point of view. It was found that if the genetic robustness plus environmental robustness is less than the network robustness, the phenotype of the biological network is robust in evolution. The tradeoff between the genetic robustness and environmental robustness in evolution is discussed from the stochastic stability robustness and sensitivity of the nonlinear stochastic biological network, which may be relevant to the statistical tradeoff between bias and variance, the so-called bias/variance dilemma. Further, the tradeoff could be considered as an antagonistic pleiotropic action of a gene network and discussed from the systems biology perspective
- …