1,411 research outputs found

    Environment-Driven Shifts in Inter-Individual Variation and Phenotypic Integration within Subnetworks of the Mussel Transcriptome and Proteome

    Get PDF
    The environment can alter the magnitude of phenotypic variation among individuals, potentially influencing evolutionary trajectories. However, environmental influences on variation are complex and remain understudied. Populations in heterogeneous environments might exhibit more variation, the amount of variation could differ between benign and stressful conditions, and/or variation might manifest in different ways among stages of the gene-to-protein expression cascade or among physiological functions. Here, we explore these three issues by quantifying patterns of inter-individual variation in both transcript and protein expression levels among California mussels, Mytilus californianus Conrad. Mussels were exposed to five ecologically relevant treatments that varied in the mean and inter-individual heterogeneity of body temperature. To target a diverse set of physiological functions, we assessed variation within 19 expression subnetworks, including canonical stress-response pathways and empirically derived co-expression clusters that represent a diffuse set of cellular processes. Variation in expression was particularly pronounced in the treatments with high mean and heterogeneous body temperatures. However, with few exceptions, environment-dependent shifts of variation in the transcriptome were not reflected in the proteome. A metric of phenotypic integration provided evidence for a greater degree of constraint on relative expression levels (i.e., stronger correlation) within expression subnetworks in benign, homogeneous environments. Our results suggest that environments that are more stressful on average – and which also tend to be more heterogeneous – can relax these expression constraints and reduce phenotypic integration within biochemical subnetworks. Context-dependent \u27unmasking\u27 of functional variation may contribute to inter-individual differences in physiological phenotype and performance in stressful environments

    Multi-omics Reveals Largely Distinct Transcript- and Protein-Level Responses to the Environment in an Intertidal Mussel

    Get PDF
    Organismal responses to stressful environments are influenced by numerous transcript- and protein-level mechanisms, and the relationships between expression changes at these levels are not always straightforward. Here, we used paired transcriptomic and proteomic datasets from two previous studies from gill of the California mussel, Mytilus californianus, to explore how simultaneous transcript and protein abundance patterns may diverge under different environmental scenarios. Field-acclimatized mussels were sampled from two disparate intertidal sites; individuals from one site were subjected to three further treatments (common garden, low-intertidal or high-intertidal outplant) that vary in temperature and feeding time. Assessing 1519 genes shared between the two datasets revealed that both transcript and protein expression patterns differentiated the treatments at a global level, despite numerous underlying discrepancies. There were far more instances of differential expression between treatments in transcript only (1451) or protein only (226) than of the two levels shifting expression concordantly (68 instances). Upregulated expression of cilium-associated transcripts (likely related to feeding) was associated with relatively benign field treatments. In the most stressful treatment, transcripts, but not proteins, for several molecular chaperones (including heat shock proteins and endoplasmic reticulum chaperones) were more abundant, consistent with a threshold model for induction of translation of constitutively available mRNAs. Overall, these results suggest that the relative importance of transcript- and protein-level regulation (translation and/or turnover) differs among cellular functions and across specific microhabitats or environmental contexts. Furthermore, the degree of concordance between transcript and protein expression can vary across benign versus acutely stressful environmental conditions

    MEPicides: Potent antimalarial prodrugs targeting isoprenoid biosynthesis

    Get PDF
    AbstractThe emergence of Plasmodium falciparum resistant to frontline therapeutics has prompted efforts to identify and validate agents with novel mechanisms of action. MEPicides represent a new class of antimalarials that inhibit enzymes of the methylerythritol phosphate (MEP) pathway of isoprenoid biosynthesis, including the clinically validated target, deoxyxylulose phosphate reductoisomerase (Dxr). Here we describe RCB-185, a lipophilic prodrug with nanomolar activity against asexual parasites. Growth of P. falciparum treated with RCB-185 was rescued by isoprenoid precursor supplementation, and treatment substantially reduced metabolite levels downstream of the Dxr enzyme. In addition, parasites that produced higher levels of the Dxr substrate were resistant to RCB-185. Notably, environmental isolates resistant to current therapies remained sensitive to RCB-185, the compound effectively treated sexually-committed parasites, and was both safe and efficacious in malaria-infected mice. Collectively, our data demonstrate that RCB-185 potently and selectively inhibits Dxr in P. falciparum, and represents a promising lead compound for further drug development.</jats:p

    Pediatric intracranial dural arteriovenous fistulas: age-related differences in clinical features, angioarchitecture, and treatment outcomes.

    Get PDF
    OBJECTIVE Intracranial dural arteriovenous fistulas (DAVFs) are rare in children. This study sought to better characterize DAVF presentation, angioarchitecture, and treatment outcomes. METHODS Children with intracranial DAVFs between 1986 and 2013 were retrospectively identified from the neurointerventional database at the authors' institution. Demographics, clinical presentation, lesion angioarchitecture, treatment approaches, angiographic outcomes, and clinical outcomes were assessed. RESULTS DAVFs constituted 5.7% (22/423) of pediatric intracranial arteriovenous shunting lesions. Twelve boys and 10 girls presented between 1 day and 18 years of age; boys presented at a median of 1.3 years and girls presented at a median of 4.9 years. Four of 8 patients ≤ 1 year of age presented with congestive heart failure compared with 0/14 patients &gt; 1 year of age (p = 0.01). Five of 8 patients ≤ 1 year old presented with respiratory distress compared with 0/14 patients &gt; 1 year old (p = 0.0021). Ten of 14 patients &gt; 1 year old presented with focal neurological deficits compared with 0/8 patients ≤ 1 year old (p = 0.0017). At initial angiography, 16 patients harbored a single intracranial DAVF and 6 patients had 2-6 DAVFs. Eight patients (38%) experienced DAVF obliteration by the end of treatment. Good clinical outcome (modified Rankin Scale score 0-2) was documented in 77% of patients &gt; 1 year old at presentation compared with 57% of patients ≤ 1 year old at presentation. Six patients (27%) died. CONCLUSIONS Young children with DAVFs presented predominantly with cardiopulmonary symptoms, while older children presented with focal neurological deficits. Compared with other pediatric vascular shunts, DAVFs had lower rates of angiographic obliteration and poorer clinical outcomes

    Barriers and facilitators to implementing telehealth services during the COVID-19 pandemic: A qualitative analysis of interviews with cystic fibrosis care team members.

    Get PDF
    BACKGROUND: The COVID-19 pandemic forced cystic fibrosis (CF) care programs to rapidly shift from in-person care delivery to telehealth. Our objective was to provide a qualitative exploration of facilitators and barriers to: 1) implementing high-quality telehealth and 2) navigating reimbursement for telehealth services. METHODS: We used data from the 2020 State of Care CF Program Survey (n=286 U.S. care programs) administered in August-September to identify two cohorts of programs, with variation in telehealth quality (n=12 programs) and reimbursement (n=8 programs). We conducted focus groups and semi-structured interviews with CF program directors and coordinators in December 2020, approximately 9 months from onset of the pandemic. We used the Consolidated Framework for Implementation Research to identify facilitators and barriers of implementation, and inductive thematic analysis to identify facilitators and barriers of reimbursement. RESULTS: Factors differentiating programs with greater and lower perceived telehealth quality included telehealth characteristics (perceived advantage over in-person care, cost, platform quality); external influences (needs and resources of those served by the CF program), characteristics of the CF program (compatibility with workflows, relative priority, available resources); characteristics of team members (individual stage of change), and processes for implementation (engaging patients and teams). Reimbursement barriers included documentation to optimize billing; reimbursement of multi-disciplinary team members, remote monitoring, and telephone-only telehealth; and lower volume of patients. CONCLUSIONS: A number of factors are associated with successful implementation and reimbursement of telehealth. Future efforts should provide guidance and incentives that support telehealth delivery and infrastructure, share best practices across CF programs, and remove barriers

    Observation of exotic meson production in the reaction π−p→η′π−p \pi^{-} p \to \eta^{\prime} \pi^- p at 18 GeV/c

    Full text link
    An amplitude analysis of an exclusive sample of 5765 events from the reaction π−p→η′π−p\pi^{-} p \to \eta^{\prime} \pi^- p at 18 GeV/c is described. The η′π−\eta^{\prime} \pi^- production is dominated by natural parity exchange and by three partial waves: those with JPC=1−+,2++,J^{PC} = 1^{-+}, 2^{++}, and 4++4^{++}. A mass-dependent analysis of the partial-wave amplitudes indicates the production of the a2(1320)a_2(1320) meson as well as the a4(2040)a_4(2040) meson, observed for the first time decaying to η′π−\eta^{\prime}\pi^-. The dominant, exotic (non-qqˉ)q\bar{q}) 1−+1^{-+} partial wave is shown to be resonant with a mass of 1.597±0.010−0.010+0.0451.597 \pm 0.010^{+0.045}_{-0.010} GeV/c^2 and a width of 0.340±0.040±0.0500.340 \pm 0.040 \pm 0.050 GeV/c^2 . This exotic state, the π1(1600)\pi_1(1600), is produced with a tt dependence which is different from that of the a2(1320)a_2(1320) meson, indicating differences between the production mechanisms for the two states.Comment: 5 pages with 4 figure

    Student learning dispositions: Multidimensional profiles highlight important differences among undergraduate stem honors thesis writers

    Get PDF
    Various personal dimensions of students—particularly motivation, self-efficacy beliefs, and epistemic beliefs—can change in response to teaching, affect student learning, and be conceptualized as learning dispositions. We propose that these learning dispositions serve as learning outcomes in their own right; that patterns of interrelationships among these specific learning dispositions are likely; and that differing constellations (or learning disposition profiles) may have meaningful implications for instructional practices. In this observational study, we examine changes in these learning dispositions in the context of six courses at four institutions designed to scaffold undergraduate thesis writing and promote students’ scientific reasoning in writing in science, technology, engineering, and mathematics. We explore the utility of cluster analysis for generating meaningful learning disposition profiles and building a more sophisticated understanding of students as complex, multidimensional learners. For example, while students’ self-efficacy beliefs about writing and science increased across capstone writing courses on average, there was considerable variability at the level of individual students. When responses on all of the personal dimensions were analyzed jointly using cluster analysis, several distinct and meaningful learning disposition profiles emerged. We explore these profiles in this work and discuss the implications of this framework for describing developmental trajectories of students’ scientific identities. We thank Mine Çetinkaya-Rundel for her insights regarding our statistical analyses. This research was funded by National Science Foundation award DUE-1525602

    Prospecting environmental mycobacteria: combined molecular approaches reveal unprecedented diversity

    Get PDF
    Background: Environmental mycobacteria (EM) include species commonly found in various terrestrial and aquatic environments, encompassing animal and human pathogens in addition to saprophytes. Approximately 150 EM species can be separated into fast and slow growers based on sequence and copy number differences of their 16S rRNA genes. Cultivation methods are not appropriate for diversity studies; few studies have investigated EM diversity in soil despite their importance as potential reservoirs of pathogens and their hypothesized role in masking or blocking M. bovis BCG vaccine. Methods: We report here the development, optimization and validation of molecular assays targeting the 16S rRNA gene to assess diversity and prevalence of fast and slow growing EM in representative soils from semi tropical and temperate areas. New primer sets were designed also to target uniquely slow growing mycobacteria and used with PCR-DGGE, tag-encoded Titanium amplicon pyrosequencing and quantitative PCR. Results: PCR-DGGE and pyrosequencing provided a consensus of EM diversity; for example, a high abundance of pyrosequencing reads and DGGE bands corresponded to M. moriokaense, M. colombiense and M. riyadhense. As expected pyrosequencing provided more comprehensive information; additional prevalent species included M. chlorophenolicum, M. neglectum, M. gordonae, M. aemonae. Prevalence of the total Mycobacterium genus in the soil samples ranged from 2.3×107 to 2.7×108 gene targets g−1; slow growers prevalence from 2.9×105 to 1.2×107 cells g−1. Conclusions: This combined molecular approach enabled an unprecedented qualitative and quantitative assessment of EM across soil samples. Good concordance was found between methods and the bioinformatics analysis was validated by random resampling. Sequences from most pathogenic groups associated with slow growth were identified in extenso in all soils tested with a specific assay, allowing to unmask them from the Mycobacterium whole genus, in which, as minority members, they would have remained undetected
    • …
    corecore