363 research outputs found

    An Electrically Detonated Downhole Seismic Gun

    Get PDF
    An electrically detonated downhole seismic gun (EDG) that will fire blank 8-guage shells underwater has been constructed and tested to 80m depth (hydrostatic pressures of 130 psi or 8.9 x 105 Pa). Although other engineering seismic guns which fire blank or projectile sources are available, they are for near-surface shots and are not meant to be used for downhold seismic surveys in water-filled boreholes. The EDG was designed primarily for checkshot surveys (well travel-time surveys) and high-quality reflection/refraction tests, but potential applications include shallow vertical seismic profiling and borehole to borehole or borehole to surface tomography, as well as optimum offset and common midpoint seismic reflection surveys. The EDG consists off four steel subassemblies: (1) chamber; (2) breech; (3) pipe; and (4) hanger. A blank 8-gauge electrical shell is held by the chamber and is detonated by an electrode located inside the breech. O-ring seals prevent water from entering the breech and causing short circuits. The breech is screwed into a pipe which is also fitted with o-ring seals to keep the internal wiring dry. A hanger subassembly provides a convenient attaching point for the hoist cable. Arming of the EDG with an explosives blaster occurs only after lowering to operating depth. The EDG has been tested with various size black powder loads up to 750 grains. Frequency bandwidth and repeatability tests were carried out under saturated conditions in a fluvial and lacustrine sedimentary section. These preliminary tests show significant frequency content in the 25-200 Hz band (peak near 100 Hz) for reflections from depths of 150-300 m, and acceptable waveform repeatability for different shot records obtained with identical geometry and acquisition parameters

    Using Physical Chemistry To Differentiate Nicotinic from Cholinergic Agonists at the Nicotinic Acetylcholine Receptor

    Get PDF
    The binding of three distinct agonists - acetylcholine (ACh), nicotine, and epibatidine - to the nicotinic acetylcholine receptor has been probed using unnatural amino acid mutagenesis. ACh makes a cation−π interaction with Trp α149, while nicotine employs a hydrogen bond to a backbone carbonyl in the same region of the agonist binding site. The nicotine analogue epibatidine achieves its high potency by taking advantage of both the cation−π interaction and the backbone hydrogen bond. A simple structural model that considers only possible interactions with Trp α149 suggests that a novel aromatic C - H···O=C hydrogen bond further augments the binding of epibatidine. These studies illustrate the subtleties and complexities of the interactions between drugs and membrane receptors and establish a paradigm for obtaining detailed structural information

    A fluorophore attached to nicotinic acetylcholine receptor beta M2 detects productive binding of agonist to the alpha delta site

    Get PDF
    To study conformational transitions at the muscle nicotinic acetylcholine (ACh) receptor (nAChR), a rhodamine fluorophore was tethered to a Cys side chain introduced at the beta-19' position in the M2 region of the nAChR expressed in Xenopus oocytes. This procedure led to only minor changes in receptor function. During agonist application, fluorescence increased by (Delta-F/F) approximate to 10%, and the emission peak shifted to lower wavelengths, indicating a more hydrophobic environment for the fluorophore. The dose-response relations for Delta-F agreed well with those for epibatidine-induced currents, but were shifted approximate to 100-fold to the left of those for ACh-induced currents. Because (i) epibatidine binds more tightly to the alpha-gamma-binding site than to the alpha-delta site and (ii) ACh binds with reverse-site selectivity, these data suggest that Delta-F monitors an event linked to binding specifically at the alpha-delta-subunit interface. In experiments with flash-applied agonists, the earliest detectable Delta-F occurs within milliseconds, i.e., during activation. At low [ACh] (less than or equal to 10 muM), a phase of Delta-F occurs with the same time constant as desensitization, presumably monitoring an increased population of agonist-bound receptors. However, recovery from Delta-F is complete before the slowest phase of recovery from desensitization (time constant approximate to 250 s), showing that one or more desensitized states have fluorescence like that of the resting channel. That conformational transitions at the alpha-delta-binding site are not tightly coupled to channel activation suggests that sequential rather than fully concerted transitions occur during receptor gating. Thus, time-resolved fluorescence changes provide a powerful probe of nAChR conformational changes

    Caged Phosphoproteins

    Get PDF
    We present the chemical and biological synthesis of caged phosphoproteins using the in vitro nonsense codon suppression methodology. Specifically, phosphoamino acid analogues of serine, threonine, and tyrosine with a single photocleavable o-nitrophenylethyl caging group were synthesized as the amino acyl tRNA adducts for insertion into full-length proteins. For this purpose, a novel phosphitylating agent was developed. The successful incorporation of these bulky and charged amino acids into the α-subunit of the nicotinic acetyl choline receptor (nAChR) and the vasodilator-stimulated phosphoprotein (VASP) using an in vitro translation system is reported

    The Grizzly, November 3, 1978

    Get PDF
    Task Force Proposes Curricular Revisions: Faculty Discusses Broad Academic Changes • Computer Programs To Be Studied • Reed This Message • Liberal Education for a Modern World • Letters to the Editor • Campus Committees Graded • Springsteen Revisited • Halloween Horrors! • Annual Messiah Rehearsal • French Club Wined and Dined • GM: Looking Good For \u2779 • Soccer Trounces Widener • Founders\u27 Convocation • Harriers Cap 12-1 Season • Mermaids Anticipate Slick Season • Hockey J. V.s With No Losses • Zetans Take Intramural Football Championship • News in Brief: Egdon Heath to Rock T. G.; Forum Presents Workshop, Performance; Ursinus Appoints Band Directorhttps://digitalcommons.ursinus.edu/grizzlynews/1005/thumbnail.jp

    Investigation of Exoskeletal Engine Propulsion System Concept

    Get PDF
    An innovative approach to gas turbine design involves mounting compressor and turbine blades to an outer rotating shell. Designated the exoskeletal engine, compression (preferable to tension for high-temperature ceramic materials, generally) becomes the dominant blade force. Exoskeletal engine feasibility lies in the structural and mechanical design (as opposed to cycle or aerothermodynamic design), so this study focused on the development and assessment of a structural-mechanical exoskeletal concept using the Rolls-Royce AE3007 regional airliner all-axial turbofan as a baseline. The effort was further limited to the definition of an exoskeletal high-pressure spool concept, where the major structural and thermal challenges are represented. The mass of the high-pressure spool was calculated and compared with the mass of AE3007 engine components. It was found that the exoskeletal engine rotating components can be significantly lighter than the rotating components of a conventional engine. However, bearing technology development is required, since the mass of existing bearing systems would exceed rotating machinery mass savings. It is recommended that once bearing technology is sufficiently advanced, a "clean sheet" preliminary design of an exoskeletal system be accomplished to better quantify the potential for the exoskeletal concept to deliver benefits in mass, structural efficiency, and cycle design flexibility
    • …
    corecore