49 research outputs found

    Role of Pressure and Aluminum Size in Solid Propellant CCP Generation

    Get PDF
    Aluminum combustion in solid propellants generates condensed products leaving the burning surface. The population of this particles is quite wide, spanning from smoke-oxide to molten metal drops. Their properties depend upon both intrinsic propellant features and combustion conditions (e.g. composition, microstructure, combustion pressure, and propellant burning rate). In propellants, aluminum is typically used in the shape of a micrometric powder. This class of energetic materials produces spherical agglomerates having the size between some tens to few hundreds of micrometers. When the metal fuel turns to nanometric, flake-kind aggregates emerge from the burning surface. Some macroscopic properties, such as the burning rate, are affected. This paper presents some results obtained from a set of aluminized propellants based on inert binder (hydroxylterminated polybutadiene) and ammonium perchlorate. The effect of both powder size and pressure is explored in terms of ballistics and condensed combustion residues. A nonstraightforward trend with pressure emerges when the condensed combustion products of propellants containing micro-aluminum and nano-aluminum are compared

    Application of Paper-Based Microfluidic Analytical Devices (µPAD) in Forensic and Clinical Toxicology: A Review

    Get PDF
    The need for providing rapid and, possibly, on-the-spot analytical results in the case of intoxication has prompted researchers to develop rapid, sensitive, and cost-effective methods and analytical devices suitable for use in nonspecialized laboratories and at the point of need (PON). In recent years, the technology of paper-based microfluidic analytical devices (μPADs) has undergone rapid development and now provides a feasible, low-cost alternative to traditional rapid tests for detecting harmful compounds. In fact, μPADs have been developed to detect toxic molecules (arsenic, cyanide, ethanol, and nitrite), drugs, and drugs of abuse (benzodiazepines, cathinones, cocaine, fentanyl, ketamine, MDMA, morphine, synthetic cannabinoids, tetrahydrocannabinol, and xylazine), and also psychoactive substances used for drug-facilitated crimes (flunitrazepam, gamma- hydroxybutyric acid (GHB), ketamine, metamizole, midazolam, and scopolamine). The present report critically evaluates the recent developments in paper-based devices, particularly in detection methods, and how these new analytical tools have been tested in forensic and clinical toxicology, also including future perspectives on their application, such as multisensing paper-based devices, microfluidic paper-based separation, and wearable paper-based sensors

    Effect of amide-based compounds on the combustion characteristics of composite solid rocket propellants

    Get PDF
    Oxamide (OXA) and azodicarbonamide (ADA) are among the known burning rate suppressants used in composite solid rocket propellants. Much research has been carried out to understand mechanism of suppression but literature about the action of OXA and ADA on the combustion characteristics of propellant is still scarce. Here, a systematic study on coolant-based propellants has been undertaken spanning from thermal analyses of ingredients to a variety of burning processes of the corresponding propellants. Thermal gravimetric analysis and differential thermal analysis on individual coolants are carried out to study their behaviour with temperature. It was noticed that the thermal decomposition of OXA exhibits only endothermic effects, whereas that of ADA presents both endothermic and exothermic effects. Successive experiments on solid propellant looking at burning rate characterization, condensed combustion product collection and visualization, pressure deflagration limit and thermochemical analysis gave a greater insight and enabled better understanding of the action of coolants during combustion. It is proposed that OXA and ADA are acting on both the condensed and gas phases. Also, the nature of coolant is a key parameter, which affects the burning rate pressure index. Increase of agglomerate size and of pressure deflagration limit was obtained in the coolant-based propellants, confirming the trend given in the literature. Keywords: Composite propellant, Ammonium perchlorate, Burning rate suppressant, Combustion characteristic

    Thermite-for-Demise (T4D): Preliminary assessment on the effects of a thermite charge in arc-heated wind tunnel experiments

    Get PDF
    The use of thermite to aid spacecraft demise during atmospheric re-entry is investigated in the ESA-TRP SPADEXO project. The Thermite-for-Demise concept was tested in L2K arc-heated wind tunnel facility. In this paper, the design of the samples for the experimental campaign is presented. The SCARAB software was used to tune the heat load on the samples and to predict the test results. A new extension for the representation of exothermic reaction was implemented. A set of numerical and experimental data were compared, confirming good agreement in terms of thermal behaviour of the samples, extra heat provided, and ignition time

    Sex difference and intra-operative tidal volume: Insights from the LAS VEGAS study

    Get PDF
    BACKGROUND: One key element of lung-protective ventilation is the use of a low tidal volume (VT). A sex difference in use of low tidal volume ventilation (LTVV) has been described in critically ill ICU patients.OBJECTIVES: The aim of this study was to determine whether a sex difference in use of LTVV also exists in operating room patients, and if present what factors drive this difference.DESIGN, PATIENTS AND SETTING: This is a posthoc analysis of LAS VEGAS, a 1-week worldwide observational study in adults requiring intra-operative ventilation during general anaesthesia for surgery in 146 hospitals in 29 countries.MAIN OUTCOME MEASURES: Women and men were compared with respect to use of LTVV, defined as VT of 8 ml kg-1 or less predicted bodyweight (PBW). A VT was deemed 'default' if the set VT was a round number. A mediation analysis assessed which factors may explain the sex difference in use of LTVV during intra-operative ventilation.RESULTS: This analysis includes 9864 patients, of whom 5425 (55%) were women. A default VT was often set, both in women and men; mode VT was 500 ml. Median [IQR] VT was higher in women than in men (8.6 [7.7 to 9.6] vs. 7.6 [6.8 to 8.4] ml kg-1 PBW, P < 0.001). Compared with men, women were twice as likely not to receive LTVV [68.8 vs. 36.0%; relative risk ratio 2.1 (95% CI 1.9 to 2.1), P < 0.001]. In the mediation analysis, patients' height and actual body weight (ABW) explained 81 and 18% of the sex difference in use of LTVV, respectively; it was not explained by the use of a default VT.CONCLUSION: In this worldwide cohort of patients receiving intra-operative ventilation during general anaesthesia for surgery, women received a higher VT than men during intra-operative ventilation. The risk for a female not to receive LTVV during surgery was double that of males. Height and ABW were the two mediators of the sex difference in use of LTVV.TRIAL REGISTRATION: The study was registered at Clinicaltrials.gov, NCT01601223

    Activated Aluminum Powders for Space Propulsion

    Get PDF
    Aluminum powders are commonly used in solid propellants to enhance the performance of space propulsion systems. During combustion, a fraction of the fuel metal particles, which emerge from the bulk, tends to merge into aggregates. These structures eventually leave the combustion surface in the shape of partially molten agglomerates which can reach the size of hundreds of microns. These condensed combustion products partake in nozzle expansion and hinder the delivered specific impulse of the rocket unit. The enhancement of original particle reactivity improves combustion quality and may reduce sensibly agglomerate size and relevant losses. More reactive aluminum fuel can be obtained by activation of micron-sized powders, without resorting to the use of nano-metals. One of the methods consists of a chemical treatment with a processing solution which alters the standard oxide layer at the surface of the particles. Such modifications grant lower ignition temperature and faster propellant burning rates but deplete a fraction of the active metal content, as a result of the chemical reaction. The present paper compares the features of three batches of aluminum particles which were treated with fluorine-based activating solutions of different concentrations. The batches were supplied in the frame of HISP FP7 European Project. The characterization focused on physical, chemical and thermal properties, looking at the reactivity of the samples and at the alterations introduced by the chemical processing. Finally, activated aluminum batches were tested in lab-scale propellants, monitoring the variation of ballistic properties with respect to a reference formulation

    Flame Height Effects on Agglomerate Size in Aluminized Solid Propellants

    No full text
    Solid rocket motors are one of the most used systems for space propulsion. Along with the numbers of advantages like simplicity, low cost, technological maturity and high thrust, this propulsion system exhibits relatively low gravimetric specific impulse among the thermochemical engine family. When metallized, solid propellants release droplets of molten aluminum (agglomerates) causing a further reduction of performance. This phenomenon depends on several parameters (e.g. burning rate, microstructure, propellant formulation, flame position, local temperatures etc.). This work focalizes the attention on the relation between agglomerate size and flame height. A theoretical investigation has been performed to select five representative formulations. An experimental campaign has been performed to characterize the materials in terms of burning rate, agglomerate size, and density. A simple code based on the GDF theory has been used to compute the flame height of interested formulations. Numerical and experimental data have been finally compared revealing a linear dependence of agglomerate size on the flame height, thus confirming the key role played by the flame in agglomerate growing and formation

    Coupled domain decomposition–proper orthogonal decomposition methods for the simulation of quasi-brittle fracture processes

    Get PDF
    In this paper, we discuss a strategy to reduce the computational costs of the simulation of dynamic fracture processes in quasi-brittle materials, based on a combination of domain decomposition (DD) and model order reduction (MOR) techniques. Fracture processes are simulated by means of three-dimensional finite element models in which use is made of cohesive elements, introduced on-the-fly wherever a cracking criterion is attained. The body is initially subdivided into sub-domains; for each sub-domain MOR is obtained through a proper orthogonal decomposition (POD) of the equations governing its evolution, until when it starts getting cracked. After crack inception within a sub-domain, the solution is switched back to the original full-order model for that sub-domain only. The computational gain attained through the coupled use of DD and POD thus depends on the geometry of the body, on the topology of sub-domains and, on top of all, on the spreading of cracking induced by load conditions. Numerical examples concerning well-established fracture tests are used for validation, and the attainable reduction of the computing time is discussed at varying decomposition into sub-domains, even in the absence of a full exploitation of parallel computing potentialities
    corecore