1,079 research outputs found

    Some comments on nˉp\bar n p-annihilation branching ratios into ππ\pi \pi-, KˉK\bar K K- and πη\pi \eta-channels

    Full text link
    We give some remarks on the nˉp\bar n p-partial branching ratios in flight at low momenta of antineutron, measured by OBELIX collaboration. The comparison is made to the known branching ratios from the ppˉp \bar p-atomic states. The branching ratio for the reaction nˉpπ+π0\bar n p \to \pi^+\pi^0 is found to be suppressed in comparison to what follows from the ppˉ p \bar p-data. It is also shown, that there is no so called dynamic I=0-amplitude suppression for the process NNˉKKˉN\bar N \to K\bar K.Comment: 8 pages, LaTeX, no figure

    High density culturing of porcine hepatocytes immobilized on nonwoven polyurethane-based biomatrices

    Get PDF
    Objective: Hepatocytes are increasingly used as functional units in bioartificial liver devices. The objective of the present study was to investigate the feasibility of culturing porcine hepatocytes in high density on a novel polyurethane-based nonwoven three-dimensional matrix. We investigated (1) the optimal cell density within this culture configuration, (2) the maintenance of liver-specific morphology and cell functions over long-term periods and (3) the necessity to apply an additional extracellular matrix component (collagen gel). Methods: Nonwoven polyurethane matrices were manufactured by a specially developed fiber extrusion technology. Pig hepatocytes were cultured at various cell densities of 0.1, 0.25, 0.5, 0.75, 1 and 2 x 10(6) cells/cm(2) on three-dimensional networks of nonwoven polyurethane matrices and cell adhesion as well as functional parameters (DNA of nonattached/attached cells, lactate dehydrogenase release and cytochrome P450 activity) were determined. To assess the performance of cells within this configuration albumin and urea excretion was measured over 8 days. The potentially beneficial effect of an additional extracellular matrix configuration was evaluated by comparing the average albumin synthesis in groups of identical cell numbers. Results: The optimal cell density in this three-dimensional culture configuration was 1 x 10(6) cells/cm(2). The functional capacity of hepatocytes was stable for 8 days at an average level of 53.7 +/- 5.6 ng/h/mug DNA and of 1.8 +/- 0.14 mug/h/mug DNA for albumin and urea excretion, respectively. The supplementation of an extracellular matrix configuration did not improve functional activity of cells. Average albumin synthesis was 35.6 ng/h/mug DNA (28.7, 42.8) and 32.7 ng/h/mug DNA (23.4, 49.2) for collagen-immobilized and control cultures, respectively, Conclusion: The results of the study indicate that nonwoven polyurethane sheets supply a biocompatible support structure for functionally active high density cultures. Thus, nonwoven polyurethane matrices should be further investigated on with respect to their role in the development, optimization and design of bioartificial liver systems. Copyright (C) 2001 S.Karger AG, Basel

    Three Dimensional Annihilation Imaging of Antiprotons in a Penning Trap

    Full text link
    We demonstrate three-dimensional annihilation imaging of antiprotons trapped in a Penning trap. Exploiting unusual feature of antiparticles, we investigate a previously unexplored regime in particle transport; the proximity of the trap wall. Particle loss on the wall, the final step of radial transport, is observed to be highly non-uniform, both radially and azimuthally. These observations have considerable implications for the production and detection of antihydrogen atoms.Comment: Invited Talk at NNP03, Workshop on Non-Neutral Plasmas, 200

    Evidence For The Production Of Slow Antiprotonic Hydrogen In Vacuum

    Get PDF
    We present evidence showing how antiprotonic hydrogen, the quasistable antiproton-proton (pbar-p) bound system, has been synthesized following the interaction of antiprotons with the hydrogen molecular ion (H2+) in a nested Penning trap environment. From a careful analysis of the spatial distributions of antiproton annihilation events, evidence is presented for antiprotonic hydrogen production with sub-eV kinetic energies in states around n=70, and with low angular momenta. The slow antiprotonic hydrogen may be studied using laser spectroscopic techniques.Comment: 5 pages with 4 figures. Published as Phys. Rev. Letters 97, 153401 (2006), in slightly different for

    Detection of antihydrogen annihilations with a Si-micro-strip and pure CsI detector

    Full text link
    In 2002, the ATHENA collaboration reported the creation and detection of cold (~15 K) antihydrogen atoms [1]. The observation was based on the complete reconstruction of antihydrogen annihilations, simultaneous and spatially correlated annihilations of an antiproton and a positron. Annihilation byproducts are measured with a cylindrically symmetric detector system consisting of two layers of double sided Si-micro-strip modules that are surrounded by 16 rows of 12 pure CsI crystals (13 x 17.5 x 17 mm^3). This paper gives a brief overview of the experiment, the detector system, and event reconstruction. Reference 1. M. Amoretti et al., Nature 419, 456 (2002).Comment: 7 pages, 5 figures; Proceedings for the 8th ICATPP Conference on Astroparticle, Particle, Space Physics, Detectors and Medical Physics Applications (Como, Italy October 2003) to be published by World Scientific (style file included

    Cold-Antimatter Physics

    Full text link
    The CPT theorem and the Weak Equivalence Principle are foundational principles on which the standard description of the fundamental interactions is based. The validity of such basic principles should be tested using the largest possible sample of physical systems. Cold neutral antimatter (low-energy antihydrogen atoms) could be a tool for testing the CPT symmetry with high precision and for a direct measurement of the gravitational acceleration of antimatter. After several years of experimental efforts, the production of low-energy antihydrogen through the recombination of antiprotons and positrons is a well-established experimental reality. An overview of the ATHENA experiment at CERN will be given and the main experimental results on antihydrogen formation will be reviewed.Comment: Proceedings of the XLIII International Meeting on Nuclear Physics, Bormio (Italy), March 13-20 (2005). 10 pages, 4 figures, 1 tabl

    The First Cold Antihydrogen

    Full text link
    Antihydrogen, the atomic bound state of an antiproton and a positron, was produced at low energy for the first time by the ATHENA experiment, marking an important first step for precision studies of atomic antimatter. This paper describes the first production and some subsequent developments.Comment: Invitated Talk at COOL03, International Workshop on Beam Cooling and Related Topics, to be published in NIM
    corecore