1,458 research outputs found

    Chaotic Properties of Dilute Two and Three Dimensional Random Lorentz Gases II: Open Systems

    Full text link
    We calculate the spectrum of Lyapunov exponents for a point particle moving in a random array of fixed hard disk or hard sphere scatterers, i.e. the disordered Lorentz gas, in a generic nonequilibrium situation. In a large system which is finite in at least some directions, and with absorbing boundary conditions, the moving particle escapes the system with probability one. However, there is a set of zero Lebesgue measure of initial phase points for the moving particle, such that escape never occurs. Typically, this set of points forms a fractal repeller, and the Lyapunov spectrum is calculated here for trajectories on this repeller. For this calculation, we need the solution of the recently introduced extended Boltzmann equation for the nonequilibrium distribution of the radius of curvature matrix and the solution of the standard Boltzmann equation. The escape-rate formalism then gives an explicit result for the Kolmogorov Sinai entropy on the repeller.Comment: submitted to Phys Rev

    Evolution of collision numbers for a chaotic gas dynamics

    Full text link
    We put forward a conjecture of recurrence for a gas of hard spheres that collide elastically in a finite volume. The dynamics consists of a sequence of instantaneous binary collisions. We study how the numbers of collisions of different pairs of particles grow as functions of time. We observe that these numbers can be represented as a time-integral of a function on the phase space. Assuming the results of the ergodic theory apply, we describe the evolution of the numbers by an effective Langevin dynamics. We use the facts that hold for these dynamics with probability one, in order to establish properties of a single trajectory of the system. We find that for any triplet of particles there will be an infinite sequence of moments of time, when the numbers of collisions of all three different pairs of the triplet will be equal. Moreover, any value of difference of collision numbers of pairs in the triplet will repeat indefinitely. On the other hand, for larger number of pairs there is but a finite number of repetitions. Thus the ergodic theory produces a limitation on the dynamics.Comment: 4 pages, published versio

    Ultralow-power local laser control of the dimer density in alkali-metal vapors through photodesorption

    Full text link
    Ultralow-power diode-laser radiation is employed to induce photodesorption of cesium from a partially transparent thin-film cesium adsorbate on a solid surface. Using resonant Raman spectroscopy, we demonstrate that this photodesorption process enables an accurate local optical control of the density of dimer molecules in alkali-metal vapors.Comment: 4 pages, 4 figure

    Relating chaos to deterministic diffusion of a molecule adsorbed on a surface

    Full text link
    Chaotic internal degrees of freedom of a molecule can act as noise and affect the diffusion of the molecule on a substrate. A separation of time scales between the fast internal dynamics and the slow motion of the centre of mass on the substrate makes it possible to directly link chaos to diffusion. We discuss the conditions under which this is possible, and show that in simple atomistic models with pair-wise harmonic potentials, strong chaos can arise through the geometry. Using molecular-dynamics simulations, we demonstrate that a realistic model of benzene is indeed chaotic, and that the internal chaos affects the diffusion on a graphite substrate

    Rectification of thermal fluctuations in ideal gases

    Get PDF
    We calculate the systematic average speed of the adiabatic piston and a thermal Brownian motor, introduced in [Van den Broeck, Kawai and Meurs, \emph{Microscopic analysis of a thermal Brownian motor}, to appear in Phys. Rev. Lett.], by an expansion of the Boltzmann equation and compare with the exact numerical solution.Comment: 18 page

    Chaotic Properties of Dilute Two and Three Dimensional Random Lorentz Gases I: Equilibrium Systems

    Full text link
    We compute the Lyapunov spectrum and the Kolmogorov-Sinai entropy for a moving particle placed in a dilute, random array of hard disk or hard sphere scatterers - i.e. the dilute Lorentz gas model. This is carried out in two ways: First we use simple kinetic theory arguments to compute the Lyapunov spectrum for both two and three dimensional systems. In order to provide a method that can easily be generalized to non-uniform systems we then use a method based upon extensions of the Lorentz-Boltzmann (LB) equation to include variables that characterize the chaotic behavior of the system. The extended LB equations depend upon the number of dimensions and on whether one is computing positive or negative Lyapunov exponents. In the latter case the extended LB equation is closely related to an "anti-Lorentz-Boltzmann equation" where the collision operator has the opposite sign from the ordinary LB equation. Finally we compare our results with computer simulations of Dellago and Posch and find very good agreement.Comment: 48 pages, 3 ps fig

    Aging to non-Newtonian hydrodynamics in a granular gas

    Get PDF
    The evolution to the steady state of a granular gas subject to simple shear flow is analyzed by means of computer simulations. It is found that, regardless of its initial preparation, the system reaches (after a transient period lasting a few collisions per particle) a non-Newtonian (unsteady) hydrodynamic regime, even at strong dissipation and for states where the time scale associated with inelastic cooling is shorter than the one associated with the irreversible fluxes. Comparison with a simplified rheological model shows a good agreement.Comment: 6 pages, 4 figures; v2: improved version to be published in EP

    Fluctuations and correlations in an individual-based model of biological coevolution

    Full text link
    We extend our study of a simple model of biological coevolution to its statistical properties. Staring with a complete description in terms of a master equation, we provide its relation to the deterministic evolution equations used in previous investigations. The stationary states of the mutationless model are generally well approximated by Gaussian distributions, so that the fluctuations and correlations of the populations can be computed analytically. Several specific cases are studied by Monte Carlo simulations, and there is excellent agreement between the data and the theoretical predictions.Comment: 25 pages, 2 figure

    Phase-Space Metric for Non-Hamiltonian Systems

    Full text link
    We consider an invariant skew-symmetric phase-space metric for non-Hamiltonian systems. We say that the metric is an invariant if the metric tensor field is an integral of motion. We derive the time-dependent skew-symmetric phase-space metric that satisfies the Jacobi identity. The example of non-Hamiltonian systems with linear friction term is considered.Comment: 12 page

    Transport coefficients for dense hard-disk systems

    Get PDF
    A study of the transport coefficients of a system of elastic hard disks, based on the use of Helfand-Einstein expressions is reported. The self-diffusion, the viscosity, and the heat conductivity are examined with averaging techniques especially appropriate for the use in event-driven molecular dynamics algorithms with periodic boundary conditions. The density and size dependence of the results is analyzed, and comparison with the predictions from Enskog's theory is carried out. In particular, the behavior of the transport coefficients in the vicinity of the fluid-solid transition is investigated and a striking power law divergence of the viscosity in this region is obtained, while all other examined transport coefficients show a drop in that density range.Comment: submitted to PR
    corecore