4 research outputs found
Evaluation Model of Rural Drinking Water Project Based on Entropy Weight and Fuzzy Comprehensive Evaluation Method
Based on Measures for Assessment of Rural Drinking Water Standard Raising Action in Zhejiang Province, this study established an evaluation system for rural drinking water project in Zhejiang Province, covering three primary indicators of project construction, project management and project performance, and 18 secondary indicators. It proposed an evaluation model based on entropy weight and fuzzy evaluation method. It solved the problems of the objectivity of the indicator weight and the quantification of the indicators, and can well achieve the coordination and unity of fuzziness and accuracy. Using this model, it evaluated a rural drinking water project in a county and concluded that both accuracy and feasibility of the model are high
Heat Transfer Analysis in Supercritical Hydrogen of Decoupled Poisoned Hydrogen Moderator with Non-Uniform Heat Source of Chinese Spallation Neutron Source
The flow field distribution and thermal properties of supercritical hydrogen are crucial factors affecting the quality of neutrons output from spallation neutron source, which may contribute to the optimization design of the moderator. Several sensitivity studies on affecting heat transfer characteristics of liquid hydrogen inside a moderator were executed, and a choice was made to use a computational fluid dynamics method for numerical simulation. The sensitivity degree of factors affecting the heat transfer characteristics of liquid hydrogen are in sequence of inlet mass flow, beam power and operating pressure. Especially when the beam power is 500 kW (the temperature range of liquid hydrogen is about 20~30 K); where the effect of mass flow rate is remarkable, the cooling effect is best in the range of 60~90 g/s × 394 mm2. Meanwhile, the maximum temperature of liquid hydrogen is close to the bottom recirculation zone due to the influence of the flow field and the heat deposition distribution of the poisoned plate. The effect of variable pressure on the temperature of liquid hydrogen is not significant, whereas the sudden rise of wall temperature is observed near the large specific heat region of 15 bar
Study of Flow and Heat Transfer for the Supercritical Hydrogen in Spallation-Type Cylindrical Neutron Moderator
Pipe height in cylindrical neutron moderator is an important factor to flow pattern, temperature distribution and even the neutron characters. In this paper, the steady-state thermal analysis of cold neutron moderator is carrying out with different heights, conjugated heat transfer method and one-way coupled with a neutron transfer software. The different pipe heights, which is the jet-to-surface distances (H/D = 0.5~6), were compared using a 2D moderator model. The results show that vortex size and velocity gradient from container wall to vortex center vary with H/D, the center of recirculation zone nearly remain constant, and heat transfer effect is weakened on the target bottom surface. With H/D increasing, the velocity at bottom target surface is progressively decreased, and cooling effect is poor, leading to the rise in temperature. The optimal range cooling performance is (H/D) = 0.5~1 at Re = 1.7 × 105, and the enhancement of beam power further strengthens the thermal deposition difference between container and liquid hydrogen. The results can be applied to moderator component design and optimization in the future spallation neutron source
Population dynamics of Agriophyllum squarrosum, a pioneer annual plant endemic to mobile sand dunes, in response to global climate change
Climate change plays an important role in the transition of ecosystems. Stratigraphic investigations have suggested that the Asian interior experienced frequent transitions between grassland and desert ecosystems as a consequence of global climate change. Using maternally and bi-parentally inherited markers, we investigated the population dynamics of Agriophyllum squarrosum (Chenopodiaceae), an annual pioneer plant endemic to mobile sand dunes. Phylogeographic analysis revealed that A. squarrosum could originate from Gurbantunggut desert since similar to 1.6 Ma, and subsequently underwent three waves of colonisation into other deserts and sandy lands corresponding to several glaciations. The rapid population expansion and distribution range shifts of A. squarrosum from monsoonal climate zones suggested that the development of the monsoonal climate significantly enhanced the population growth and gene flow of A. squarrosum. These data also suggested that desertification of the fragile grassland ecosystems in the Qinghai-Tibetan Plateau was more ancient than previously suggested and will be aggravated under global warming in the future. This study provides new molecular phylogeographic insights into how pioneer annual plant species in desert ecosystems respond to global climate change, and facilitates evaluation of the ecological potential and genetic resources of future crops for non-arable dry lands to mitigate climate change