16 research outputs found

    Comparative and functional genomics of closteroviruses.

    No full text
    The largest extant RNA genomes are found in two diverse families of positive-strand RNA viruses, the animal Coronaviridae and the plant Closteroviridae. Comparative analysis of the viruses from the latter family reveals three levels of gene conservation. The most conserved gene module defines RNA replication and is shared with plant and animal viruses in the alphavirus-like superfamily. A module of five genes that function in particle assembly and transport is a hallmark of the family Closteroviridae and was likely present in the ancestor of all three closterovirus genera. This module includes a homologue of Hsp70 molecular chaperones and three diverged copies of the capsid protein gene. The remaining genes show dramatic variation in their numbers, functions, and origins among closteroviruses within and between the genera. Proteins encoded by these genes include suppressors of RNA silencing, RNAse III, papain-like proteases, the AlkB domain implicated in RNA repair, Zn-ribbon-containing protein, and a variety of proteins with no detectable homologues in the current databases. The evolutionary processes that have shaped the complex and fluid genomes of the large RNA viruses might be similar to those that have been involved in evolution of genomic complexity in other divisions of life

    The family Closteroviridae revised

    No full text
    Recently obtained molecular and biological information has prompted the revision of the taxonomic structure of the family Closteroviridae. In particular, mealybug-transmitted species have been separated from the genus Closterovirus and accommodated in a new genus named Ampelovirus (fromampelos, Greek for grapevine). Thus, the family now comprises three genera. Their major properties are (i) Closterovirus: type species Beet yellows virus, genome monopartite, 15.5-19.3 kb in size, a 22-25 kDa major coat protein (CP), the gene encoding the divergent CP analogue (CPd) upstream of the CP cistron, transmission by aphids, a membership of 8 definitive and 4 tentative species; (ii) Ampelo-virus: type speciesGrapevine leafroll virus 3, genome monopartite 16.9-19.5 kb in size, a 35-37 kDa major CP, a CPd cistron generally located downstream of the CP gene, transmission by pseudococcid and coccid mealybugs, a membership of 6 definitive and 5 tentative species; (iii) Crinivirus: type species Lettuce infectious yellows virus, genome essentially bipartite 15.3-19 kb in size, a 28-33 kDa CP, a CPd cistron downstream of the CP gene, transmission by whiteflies (Bemisia, Trialeurodes), a membership of 7 definitive and 3 tentative species. There are five unassigned species in the family.Peer reviewe

    Stem pitting and seedling yellows symptoms of Citrus tristeza virus infection may be determined by minor sequence variants

    No full text
    The isolates of Citrus tristeza virus (CTV), the most destructive viral pathogen of citrus, display a high level of variability. As a result of genetic bottleneck induced by the bud-inoculation of CTV-infected material, inoculated seedlings of Citrus wilsonii Tanaka displayed different symptoms. All successfully grafted plants showed severe symptoms of stem pitting and seedling yellows, while plants in which inoculated buds died displayed mild symptoms. Since complex CTV population structure was detected in the parental host, the aim of this work was to investigate how it changed after the virus transmission, and to correlate it with observed symptoms. The coat protein gene sequence of the predominant genotype was identical in parental and grafted plants and clustered to the phylogenetic group 5 encompassing severe reference isolates. In seedlings displaying severe symptoms, the low-frequency variants clustering to other phylogenetic groups were detected, as well. Indicator plants were inoculated with buds taken from unsuccessfully grafted C. wilsonii seedlings. Surprisingly, they displayed no severe symptoms despite the presence of phylogenetic group 5 genomic variants. The results suggest that the appearance of severe symptoms in this case is probably induced by a complex CTV population structure found in seedlings displaying severe symptoms, and not directly by the predominant genomic variant
    corecore