6 research outputs found

    Health status, infection and disease in California sea lions (Zalophus californianus) studied using a canine microarray platform and machine-learning approaches

    No full text
    Conservation biologists face many challenges in assessing health, immune status and infectious diseases in protected species. These challenges include unpredictable sample populations, diverse genetic and environmental backgrounds of the animals, as well as the practical, legal and ethical issues involved in experimentation. The use of whole genome scale transcriptomics with animal samples obtained in a minimally invasive manner is an approach that shows promise for health assessment. In this study we assessed the utility of a microarray to identify changes in gene expression predictive of health status by interrogating blood samples from California sea lions (Zalophus californianus) in rehabilitation. A custom microarray was developed from the commercially available dog microarray (Canis familiaris) by selecting probes that demonstrated reliable cross-hybridization with RNA in sea lion blood. This custom microarray was used for the analysis of RNA from 73 sea lion blood samples, from animals with a broad spectrum of health changes. Both traditional classifying techniques and newer artificial neural network approaches correctly classified sea lions with respect to health status, primarily distinguishing between leptospirosis infection and domoic acid exposure. Real time PCR validation for a small set of genes, followed by sequencing, showed good correlation with array results and high identity (96-98%) between the dog and sea lion sequences. This approach to health status classification shows promise for disease identification in a clinical setting, and assessment of health status of wildlife

    The Growth Dynamics of \u3ci\u3eKarenia brevis\u3c/i\u3e Within Discrete Blooms on the West Florida Shelf

    No full text
    As part of the ECOHAB: Florida Program, we studied three large blooms of the harmful bloom forming dinoflagellate Karenia brevis. These blooms formed on the West Florida Shelf during Fall of 2000 off Panama City, and during Fall 2001 and Fall 2002 off the coastline between Tampa Bay and Charlotte Harbor. We suggest that these blooms represent two different stages of development, with the 2000 and 2001 blooms in an active growth or maintenance phase and the 2002 bloom in the early bloom initiation phase. Each bloom was highly productive with vertically integrated primary production values of 0.47-0.61, 0.39-1.33 and 0.65 g C m(-2) d(-1) for the 2000, 2001 and 2002 K brevis blooms, respectively. Carbon specific growth rates were low during each of these blooms with values remaining fairly uniform with depth corresponding to generation times of 3-5 days. Nitrogen assimilation by K. brevis was highest during 2001 with values ranging from 0.15 to 2.14 mu mol N L-1 d(-1) and lower generally for 2000 and 2002 (0.01-0.64 and 0.66-0.76 mu mol N L-1 d(-1) for 2000 and 2002, respectively). The highest K. brevis cell densities occurred during the 2001 bloom and ranged from 400 to 800 cells mL(-1). Cell densities were lower for each of the 2000 and 2002 blooms relative to those for 2001 with densities ranging from 100 to 500 cells mL-1. The 2000 and 2001 blooms were dominated by K brevis in terms of its contribution to the total chlorophyll a (chl a) pool with K brevis accounting generally for \u3e 70% of the observed chl a. For those populations that were dominated by K brevis (e.g. 2000 and 2001), phytoplankton C biomass (C-p,C-o) constituted \u3c 30% of the total particulate organic carbon (POC). However, in 2002 when diatoms and K brevis each contributed about the same to the total chl a, C-p,C-o was \u3e 72% of the POC. The fraction of the total chl a that could be attributed to K. brevis was most highly correlated with POC, chl a and salinity. Nitrogen assimilation rate and primary production were highly correlated with a greater correlation coefficient than all other comparisons. (c) 2007 Elsevier Ltd. All rights reserved
    corecore