28 research outputs found

    MMG3D: User Guide

    Get PDF
    MMG3D is a tetrahedral fully automatic remesher. Starting from a tetrahedral mesh, it produces quasi-uniform meshes with respect to a metric tensor field. This tensor prescribes a length and a direction for the edges, so that the resulting meshes will be anisotropic. The software is based on local mesh modifications and an anisotropic version of Delaunay kernel is implemented to insert vertices in the mesh. Moreover, {\mmg} allows one to deal with rigid body motion and moving meshes. When a displacement is prescribed on a part of the boundary, a final mesh is generated such that the surface points will be moved according this displacement. More details can be found on http://www.math.u-bordeaux1.fr/~dobj/logiciels/mmg3d.php

    Construction of a pp-adaptive continuous Residual Distribution scheme

    Get PDF
    A \textit{p}-adaptive continuous Residual Distribution scheme is proposed in this paper.Under certain conditions, primarily the expression of the total residual on a given element KK into residuals on the sub-elements of KK and the use of a suitable combination of quadrature formulas,it is possible to change locally the degree of the polynomial approximation of the solution.The discrete solution can then be considered non continuous across the interface of elements of different orders, while the numerical scheme still verifies the hypothesis of the discrete Lax-Wendroff theorem which ensures its convergenceto a correct weak solution.We detail the theoretical material and the construction of our \textit{p}-adaptive method in the frame of a continuous Residual Distribution scheme. Different test cases for non-linear equations at different flow velocities demonstrate numerically the validity of the theoretical results

    MĂ©thode de pĂ©nalization basĂ©e sur une approche d’adaptation enformalisme rĂ©sidu distribuĂ© ALE pour des objets mobiles en Ă©coulement laminaire

    Get PDF
    The coupling of anisotropic unstructured mesh adaptation techniques with an immersed boundary method (IBM) called penalization is studied for time dependent flow simulations involving moving objects. To extend Residual Distribution (RD) method to the penalized Navier Stokes equations, a new formulation based on a Strang splitting is developed. To reduce the error on solid boundaries, unstructured mesh adaptation based on an elasticity model is used. Keeping a constant connectivity, the mesh evolves in time according to the solid position, and the new formulation is proposed in an ALE framework.Le couplage des techniques d’adaptation de maillages non structurĂ©s anisotropes avec une mĂ©thode de frontiĂšre immergĂ©e (IBM) appelĂ©e PĂ©nalization est Ă©tudiĂ© pour des simulations instationnaires impliquant des objents en mouvement. Pour Ă©tendre les mĂ©thodes de distribution du rĂ©sidu (RD) aux Ă©quations de Navier Stokes pĂ©nalisĂ©es, une nouvelle formulation basĂ©e sur un splitting de Strang est dĂ©veloppĂ©e. Pour rĂ©duire l’erreur sur les frontiĂšres du solide, une adaptation de maillage non structurĂ© est utilisĂ©e, basĂ©e sur un modĂšle d’élasticitĂ©. Gardant une connectivitĂ© constante, le maillage Ă©volue en temps en accord avec la position du solide, et la nouvelle formulation est proposĂ©e dans un formalisme ALE

    RODIN project, Topology Optimization 2.0?

    Get PDF
    RODIN project is an attempt to propose a new kind of topology optimization tools. It has been motivated by the combination of two events: (1) the industrials demands for getting past serious limits identified in the available tools, (2) the advent of a new mathematical approach in the mid 2000's presenting very interesting properties. This project has been launched in July 2012 and is supported by French public funding. It is a collaborative project that gathers ten partners (ranging from academics to software editors and industrials end-users) and firmly aims at overcoming technical and scientific locks in the area of topology optimization. RODIN is therefore an ambitious and risky project that will possibly mark the birth of a new numerical tool

    GĂ©nĂ©ration de maillages d’ordre Ă©levĂ© pour des gĂ©omĂ©tries complexes courbes

    No full text
    We propose a new approach for constructing and untangling curved simplicial meshes thatfit exactly to a geometrical boundary defined using quadratic BĂ©zier patches. The method comprises twomain ingredients: a linear elasticity analogy for untangling volume elements on the one hand and a localtopological optimization for resolving invalid surface elements on the other hand.Starting from a linear mesh with a quadratic curved boundary, the first step of the algorithm consists inuntangling surface mesh elements. In this phase, the problem is cast as a constrained optimization onewhereby the worst element’s quality is improved iteratively under the constraint of maintaining validneighboring elements. The problem is then reformulated as an unconstrained optimization through theuse of a log-barrier method. The second step of the algorithm involves propagating the curvature to thevolume of the domain via a linear elasticity analogy resulting in a valid volume mesh. Finally, two andthree dimensional numerical examples are provided to validate the proposed approach.Dans ce document, nous proposons une nouvelle approche pour construire des maillages simpli-ciaux courbes reprĂ©sentant exactement une frontiĂšre dĂ©finie par des patches de BĂ©zier quadratiques. CettemĂ©thode est composĂ©e de deux parties distinctes : d’une part une analogie Ă©lastique pour dĂ©tordre les Ă©lĂ©-ments de volumes et d’autre part une mĂ©thode d’optimisation topologique locale pour rendre valide lesĂ©lĂ©ments surfaciques. Partant d’un maillage linĂ©aire avec une frontiĂšre courbe quadratique, la premiĂšreĂ©tape de notre algorithme consiste Ă  dĂ©tordre les Ă©lĂ©ments de surface. Dans cette phase, le problĂšme estĂ©crit comme un problĂšme d’optimisation non contraint grĂące Ă  l’utilisation d’une mĂ©thode log-barrier. Laseconde Ă©tape de l’algorithme propage la courbure de la surface au volume en considĂ©rant le maillagecomme un solide Ă©lastique. Des exemples en deux et trois dimensions sont fournis pour valider la mĂ©thodeproposĂ©e

    High order mesh untangling for complex curved geometries

    No full text
    Dans ce document, nous proposons une nouvelle approche pour construire des maillages simpli-ciaux courbes reprĂ©sentant exactement une frontiĂšre dĂ©finie par des patches de BĂ©zier quadratiques. CettemĂ©thode est composĂ©e de deux parties distinctes : d’une part une analogie Ă©lastique pour dĂ©tordre les Ă©lĂ©-ments de volumes et d’autre part une mĂ©thode d’optimisation topologique locale pour rendre valide lesĂ©lĂ©ments surfaciques. Partant d’un maillage linĂ©aire avec une frontiĂšre courbe quadratique, la premiĂšreĂ©tape de notre algorithme consiste Ă  dĂ©tordre les Ă©lĂ©ments de surface. Dans cette phase, le problĂšme estĂ©crit comme un problĂšme d’optimisation non contraint grĂące Ă  l’utilisation d’une mĂ©thode log-barrier. Laseconde Ă©tape de l’algorithme propage la courbure de la surface au volume en considĂ©rant le maillagecomme un solide Ă©lastique. Des exemples en deux et trois dimensions sont fournis pour valider la mĂ©thodeproposĂ©e.We propose a new approach for constructing and untangling curved simplicial meshes thatfit exactly to a geometrical boundary defined using quadratic BĂ©zier patches. The method comprises twomain ingredients: a linear elasticity analogy for untangling volume elements on the one hand and a localtopological optimization for resolving invalid surface elements on the other hand.Starting from a linear mesh with a quadratic curved boundary, the first step of the algorithm consists inuntangling surface mesh elements. In this phase, the problem is cast as a constrained optimization onewhereby the worst element’s quality is improved iteratively under the constraint of maintaining validneighboring elements. The problem is then reformulated as an unconstrained optimization through theuse of a log-barrier method. The second step of the algorithm involves propagating the curvature to thevolume of the domain via a linear elasticity analogy resulting in a valid volume mesh. Finally, two andthree dimensional numerical examples are provided to validate the proposed approach.Maillages adaptatifs pour les interfaces instationnaires avec deformations, etirements, courbures

    Unstructured Anisotropic Mesh Adaptation using Level Sets and Penalization Techniques

    No full text
    Penalization methods are an efficient alternative to explicitly impose boundary conditions but their accuracy is generally of first order. In this work we propose to combine the easiness of penalization techniques with the precision of unstructured anisotropic mesh adaptation. Level sets are used to describe the geometry so that geometrical and topological changes due to physics are straight forward to follow. Navier-Stokes simulations are performed and a new way to impose a slipping wall boundary condition is proposed

    PaMPA : Parallel Mesh Partitioning and Adaptation

    No full text
    Nous prĂ©sentons les capacitĂ©s de remailage parallĂšle de PaMPA, une bibliothĂšque dĂ©diĂ©e Ă  la manipulation de maillages non structurĂ©s distribuĂ©s sur les processeurs d'une machine parallĂšle. PaMPA effectue son remaillage parallĂšle en sĂ©lectionnant des sous-ensembles indĂ©pendants d'Ă©lĂ©ments devant ĂȘtre remaillĂ©s, et en exĂ©cutant un remailleur sĂ©quentiel fourni par l'utilisateur (p.ex. MMG3D) sur ces sous-ensembles. Ce processus est rĂ©pĂ©tĂ© sur les zones non encore remaillĂ©s jusqu'Ă  ce que tout le maillage soit remaillĂ©. Le nouveau maillage est alors repartitionnĂ© pour restaurer l'Ă©quilibre de la charge. Nous prĂ©sentons des rĂ©sultats expĂ©rimentaux pour lesquels nous gĂ©nĂ©rons des maillages tĂ©traĂ©draux anisotropes de grande qualitĂ©, Ă  plusieurs centaines de millions de mailles, Ă  partir de maillages initiaux Ă  quelques millions de mailles.We present the parallel remeshing capabilities of PaMPA, a library dedicated to the management of unstructured meshes distributed across the processors of a parallel machine. PaMPA performs parallel remeshing by selecting independent subsets of elements that need remeshing, and running a user-provided sequential remesher (e.g. MMG3D) on these subsets. This process is repeated on yet un-remeshed areas until all of the mesh is remeshed. The new mesh is then repartitioned to restore load balance. We present experimental results where we generate high quality, anisotropic tetrahedral meshes comprising several hundred million elements from initial meshes of several million elements
    corecore