268 research outputs found

    Data-driven analysis of ultrasonic pressure tube inspection data

    Get PDF
    Pressure tubes are critical components of the CANDU reactors and other pressurized heavy water type reactors, as they contain the nuclear fuel and the coolant. Manufacturing flaws, as well as defects developed during the in-service operation, can lead to coolant leakage and can potentially damage the reactor. The current inspection process of these flaws is based on manually analyzing ultrasonic data received from multiple probes during planned, statutory outages. Recent advances on ultrasonic inspection tools enable the provision of high resolution data of significantly large volumes. This is highlighting the need for an efficient autonomous signal analysis process. Typically, the automation of ultrasonic inspection data analysis is approached by knowledge-based or supervised data-driven methods. This work proposes an unsupervised data-driven framework that requires no explicit rules, nor individually labeled signals. The framework follows a two-stage clustering procedure that utilizes the DBSCAN density-based clustering algorithm and aims to provide decision support for the assessment of potential defects in a robust and consistent way. Nevertheless, verified defect dimensions are essential in order to assess the results and train the framework for unseen defects. Initial results of the implementation are presented and discussed, with the method showing promise as a means of assessing ultrasonic inspection data

    Spatial calibration of large volume photogrammetry based metrology systems

    Get PDF
    Photogrammetry systems are used extensively as volumetric measurement tools in a diverse range of applications including gait analysis, robotics and computer generated animation. For precision applications the spatial inaccuracies of these systems are of interest. In this paper, an experimental characterisation of a six camera Vicon T160 photogrammetry system using a high accuracy laser tracker is presented. The study was motivated by empirical observations of the accuracy of the photogrammetry system varying as a function of location within a measurement volume of approximately 100 m3. Error quantification was implemented through simultaneously tracking a target scanned through a sub-volume (27 m3) using both systems. The position of the target was measured at each point of a grid in four planes at different heights. In addition, the effect of the use of passive and active calibration artefacts upon system accuracy was investigated. A convex surface was obtained when considering error as a function of position for a fixed height setting confirming the empirical observations when using either calibration artefact. Average errors of 1.48 mm and 3.95 mm were obtained for the active and passive calibration artefacts respectively. However, it was found that through estimating and applying an unknown scale factor relating measurements, the overall accuracy could be improved with average errors reducing to 0.51 mm and 0.59 mm for the active and passive datasets respectively. The precision in the measurements was found to be less than 10 μm for each axis

    A Strong Jet Signature in the Late-Time Lightcurve of GW170817

    Get PDF
    We present new 0.6-10 GHz observations of the binary neutron star merger GW170817 covering the period up to 300 days post-merger, taken with the Karl G. Jansky Very Large Array, the Australia Telescope Compact Array, the Giant Metrewave Radio Telescope and the MeerKAT telescope. We use these data to precisely characterize the decay phase of the late-time radio light curve. We find that the temporal decay is consistent with a power-law slope of t^-2.2, and that the transition between the power-law rise and decay is relatively sharp. Such a slope cannot be produced by a quasi-isotropic (cocoon-dominated) outflow, but is instead the classic signature of a relativistic jet. This provides strong observational evidence that GW170817 produced a successful jet, and directly demonstrates the link between binary neutron star mergers and short-hard GRBs. Using simple analytical arguments, we derive constraints on the geometry and the jet opening angle of GW170817. These results are consistent with those from our companion Very Long Baseline Interferometry (VLBI) paper, reporting superluminal motion in GW170817.Comment: 11 pages, 3 figures, 3 tables. Accepted for publication in ApJ Letter

    Superluminal motion of a relativistic jet in the neutron star merger GW170817

    Get PDF
    The binary neutron star merger GW170817 was accompanied by radiation across the electromagnetic spectrum and localized to the galaxy NGC 4993 at a distance of 41+/-3 Mpc. The radio and X-ray afterglows of GW170817 exhibited delayed onset, a gradual rise in the emission with time as t^0.8, a peak at about 150 days post-merger, followed by a relatively rapid decline. To date, various models have been proposed to explain the afterglow emission, including a choked-jet cocoon and a successful-jet cocoon (a.k.a. structured jet). However, the observational data have remained inconclusive as to whether GW170817 launched a successful relativistic jet. Here we show, through Very Long Baseline Interferometry, that the compact radio source associated with GW170817 exhibits superluminal motion between two epochs at 75 and 230 days post-merger. This measurement breaks the degeneracy between the models and indicates that, while the early-time radio emission was powered by a wider-angle outflow (cocoon), the late-time emission was most likely dominated by an energetic and narrowly-collimated jet, with an opening angle of <5 degrees, and observed from a viewing angle of about 20 degrees. The imaging of a collimated relativistic outflow emerging from GW170817 adds substantial weight to the growing evidence linking binary neutron star mergers and short gamma-ray bursts.Comment: 42 pages, 4 figures (main text), 2 figures (supplementary text), 2 tables. Referee and editor comments incorporate

    A retrospective analysis of noise-induced hearing loss in the Dutch construction industry

    Get PDF
    Purpose Noise exposure is an important and highly prevalent occupational hazard in the construction industry. This study examines hearing threshold levels of a large population of Dutch construction workers and compares their hearing thresholds to those predicted by ISO-1999. Methods In this retrospective study, medical records of periodic occupational health examinations of 29,644 construction workers are analysed. Pure-tone audiometric thresholds of noise-exposed workers are compared to a non-exposed control group and to ISO-1999 predictions. Regression analyses are conducted to explore the relationship between hearing loss and noise intensity, noise exposure time and the use of hearing protection. Results Noise-exposed workers had greater hearing losses compared to their non-noise-exposed colleagues and to the reference population reported in ISO-1999. Noise exposure explained only a small proportion of hearing loss. When the daily noise exposure level rose from 80 dB(A) towards 96 dB(A), only a minor increase in hearing loss is shown. The relation of exposure time and hearing loss found was similar to ISO-1999 predictions when looking at durations of 10 years or more. For the first decade, the population medians show poorer hearing than predicted by ISO-1999. Discussion Duration of noise exposure was a better predictor than noise exposure levels, probably because of the limitations in noise exposure estimations. In this population, noise-induced hearing loss was already present at the beginning of employment and increased at the same rate as is predicted for longer exposure duration

    A quantitative investigation for deployment of mobile collaborative robots in high-value manufacturing

    Get PDF
    Component inspection is often the bottleneck in high-value manufacturing, driving industries like aerospace toward automated inspection technologies. Current systems often employ fixed arm robots, but they lack the flexibility in adapting to new components or orientations Advanced mobile robotic platforms with updated sensor technologies and algorithms have improved localization and path planning capabilities, making them ideal for bringing inspection processes directly to parts. However, mobile platforms introduce challenges in localization and maneuverability, leading to potential errors. Their positional uncertainty is higher than fixed systems due to the lack of a fixed calibrated location, posing challenges for position-sensitive inspection sensors. Therefore, it's essential to assess the positional accuracy and repeatability of mobile manipulator platforms. The KUKA KMR iiwa was chosen for its collaborative features, robust build, and scalability within the KUKA product range. The accuracy and repeatability of the mobile platform were evaluated through a series of tests to evaluate the performance of its integrated feature mapping, the effect of various speeds on positional accuracy, and the efficiency of the omnidirectional wheels for a range of translation orientations. Experimental evaluation revealed that enabling feature mapping substantially improves the KUKA KMR iiwa's performance, with accuracy gains and error reductions exceeding 90%. Repeatability errors were under 7 mm with mapping activated and around 2.5 mm in practical scenarios, demonstrating that mobile manipulators, incorporating both the manipulator and platform, can fulfil the precise requirements of industries with high precision needs. Providing a highly diverse alternative to traditional fixed-base industrial manipulators

    Multi-sensor electromagnetic inspection feasibility for aerospace composites surface defects

    Get PDF
    UK's presence at the forefront of composite manufacturing in Europe has never been more important provided how vital these structures are for i) slowing the climate change through reduction of fuel consumption and carbon footprint in different industries, and ii) development of wind and tidal blades to generate cleaner energy to achieve the net-zero target by the middle of the century. Therefore, the composite technology, Carbon Fibre Reinforced Polymers (CFRP) in particular, has been dominating the aerospace, energy, and defense industries, and this trend is expected to grow in the years to come. Non-Destructive Evaluation (NDE) is essential during manufacturing: to identify any defects early in the process as, if defects remain undetected, they could have far-reaching implications for the cost of scraped/repaired parts and the safety of final components, and ii) at later stages of manufacturing and post-manufacturing: to ensure the quality, integrity, and fitness for service of these safetycritical components. Although Ultrasound Testing (UT) has been predominantly used for inspection CFRPs owing to its excellent performance for bulk NDE inspections, the method is not sufficiently sensitive to all defect types occurring in such components. Ultrasonic waves transmitted using array probes on CFRP components mainly interact with defects that are extended perpendicularly to the direction of the wave propagation such as delamination. The technique does not offer sufficient sensitivity for the detection of shallow and narrow surface defects commonly created by matrix transversal cracking and barely visible impact damage mechanisms. The compound CFRP gives rise to the mixed electromagnetic properties where highly conductive carbon fibres are molded in a dielectric resin matrix. This provides a unique opportunity to explore the potential of electromagnetic NDE sensing modalities such as Eddy Currents (EC) and electrical Capacitance Imaging (CI) for inspection of surface defects. Accordingly, this feasibility study was aimed at investigating the design, automated robotic delivery, and performance assessment of different sensor technologies for the detection of surface defects through experiments. To this end, machined surface defects were fabricated in a CFRP sample. The automated robotic inspection was implemented for all UT, EC, and CI sensors individually where a novel sensor-enabled robotic system based on a real-time embedded controller was developed. The system components consisting of a KUKA robotic arm, Force/Torque (F/T) sensor, and NDE sensor and controller were interfaced through a core program in LabVIEW enabling a) real-time communication between different hardware, b) data acquisition from all sensors and c) full control of the processes within the cell. Moreover, real-time robot motion corrections driven by the F/T sensor feedback were established to adjust the contact force and orientation of the sensors to the component surface during the scan. All sensors, including the UT roller-probe, EC array, and CI sensor boards, were robotically delivered on the designated surface notches with varying depths of 0.1, 0.2, 0.5, and 5 mm. The results of EC and CI testing showed enhanced detectability with high SNR for the defects shallower than 0.2 mm when compared to the UT B-scan images
    corecore