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ABSTRACT 

Pressure tubes are critical components of the CANDU reactors and other pressurized heavy 
water type reactors, as they contain the nuclear fuel and the coolant. Manufacturing flaws, as well 
as defects developed during the in-service operation, can lead to coolant leakage and can 
potentially damage the reactor. The current inspection process of these flaws is based on manually 
analyzing ultrasonic data received from multiple probes during planned, statutory outages. Recent 
advances on ultrasonic inspection tools enable the provision of high resolution data of 
significantly large volumes. This is highlighting the need for an efficient autonomous signal 
analysis process. Typically, the automation of ultrasonic inspection data analysis is approached by 
knowledge-based or supervised data-driven methods. This work proposes an unsupervised data-

driven framework that requires no explicit rules, nor individually labeled signals. The framework 
follows a two-stage clustering procedure that utilizes the DBSCAN density-based clustering 
algorithm and aims to provide decision support for the assessment of potential defects in a robust 
and consistent way. Nevertheless, verified defect dimensions are essential in order to assess the 
results and train the framework for unseen defects. Initial results of the implementation are 
presented and discussed, with the method showing promise as a means of assessing ultrasonic 
inspection data. 
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1 INTRODUCTION 

Ultrasonic non-destructive testing is widely used for flaw detection and characterization in materials 
within the nuclear industry [1, 2]. However, the analysis of data obtained from ultrasonic inspection is 
time consuming and often requires manual assessment due to the complexity of distinguishing between 
noise and signals indicating defective areas. Hardware advancements in ultrasonic non-destructive 
technologies offer the ability to stream data in far greater volumes than in the past. This is driving a 
demand for automatic inspection data analysis frameworks that will allow faster assessment while 
maintaining a consistent level of results. Consequently, several automation techniques have been explored 
in different industries, using either knowledge-based or supervised data-driven approaches [3-5]. These 
approaches usually involve rules, assumptions and signal transformations that are specific to the 
underlying monitored system, creating system-specific procedures, or require pre-labeled individual 
signals. 

Currently, there is limited research focusing on the unsupervised analysis of ultrasonic inspection 
data. Outlier analysis has been applied as a means to diagnose the structural damage of a variety of 
systems [6-7]. This approach is based on the assumption of an existing baseline distribution of ‘healthy’ 
signals and uses a pre-defined threshold of three standard deviations to determine the state of the 
examined signals. More recent work [8] utilizes a clustering algorithm and illustrated the feasibility of the 



method on polymer specimen containing artificial defects. However, two crucial issues make this method 
unsuitable for our purpose. Firstly, is the requirement of pre-defined number of clusters (see Section 
3.3.1). Secondly, the assumption of point-to-point consistency between the signals, a requirement for the 
applied pre-processing step, cannot be guaranteed by the current pressure tube inspection process.   

In this work, we propose an unsupervised machine learning approach to group together signals 
derived from defective regions, and separate them from those derived from healthy regions of a 
component under inspection. The process requires no individually labeled signals, nor a predefined 
normal state. It follows a two-stage clustering procedure that takes into account both signal features and 
position features, enabling noise elimination. The extracted signal features are simple statistical properties 
of the signals that require no wave-transformations. Furthermore, the number of features is minimal to 
avoid the curse-of-dimensionality and time-consuming feature-space transformations that increase the 
number of the assumptions. Enabling this procedure is a density-based clustering algorithm (DBSCAN) 
which offers advantages for this application, such as the detection of arbitrarily shaped clusters, no 
requirement to predefine the number of clusters, and outlier detection. 

This paper describes the application of the machine learning approach to inspection data of CANDU 
reactor pressure tubes. The datasets consist of ultrasonic signals obtained by a 20MHz normal incidence 
pulse echo probe and two pairs of axial and circumferential pitch-catch probes from areas containing 
defects. Their location and sizing have been verified manually by independent analysts, providing a 
valuable source for the algorithm’s assessment stage. Initial results of the implementation are presented 
and discussed, with the method showing promise as a means of identifying pressure tube defects. 

2 CANDU REACTORS 

2.1 CANDU Design 

CANDU is a type of pressurized heavy water reactor (PHWR) that uses natural uranium as fuel and 
heavy water (deuterium oxide D2O) as both coolant and moderator. The core structural components 
consist of low neutron absorbing materials (zirconium alloys) and its design enables high neutron 
economy which is critical for achieving fission through a sustained chain reaction, given that natural 
uranium has low fissile content. The core consists of a low-pressure steel tank, called the calandria, which 
contains the moderator and around 480 
fuel channels that run across the length of 
the calandria tank. Each fuel channel 
(Fig. 1) consists of a thin zircaloy tube 
(calandria tube) that contains another, 
thicker, zircaloy tube, called pressure 
tube. The two tubes are separated by the 
annulus garter-spring spacers that create a 
gap allowing the flow of an insulating 
gas, called annulus gas. The fuel bundles 
are located inside the pressure rubes, and 
they are cooled by the hot (~300 oC) 
pressured (~10 MPa) heavy water coolant 
that runs through the pressure tubes. This 
configuration enables the insulation of the 
unpressurised cool (~70 oC) moderator 
from the hot pressurized coolant.  Figure 1.  CANDU reactor fuel channel [10]. 



2.2 Pressure Tubes 

Pressure tubes are one of the critical components of pressurized heavy water reactors currently 
operating in Argentina, Canada, India, Pakistan, the Republic of Korea, and Romania. During their 30 
year design life they are required to operate reliably in an extremely harsh environment of high pressure, 
temperature and neutron flux. Although the extensive quality controls and monitoring of the pressure 
tubes have ensured a good overall performance [9], pressure tubes are subjected to some degradation 
mechanisms facilitated by the severe conditions, which could cause a pressure tube failure.  

One of the principal degradation mechanisms that pressure tubes experience is concentration of 
hydrogen/deuterium at large tensile stresses within the tube. This can precipitate hydrides that initiate a 
process called Delayed Hydride Cracking (DHC) that can cause coolant leakage potentially damaging the 
reactor. Therefore there is a need to closely monitor any pressure tube tensile stress concentrations, such 
as flaws and defects created during tube manufacture, installation, commissioning or operation. Examples 
of such flaws include refueling scratches, fuel fretting, crevice corrosion and debris fretting.  

2.3 Inspection Setup 

The inspection of CANDU pressure tubes is currently mainly performed during planned, statutory 
outages. This paper is focuses on data obtained by a multiple ultrasonic probe tool known as CIGAR 
(Gauging Apparatus for Reactors). The tool consists of two normal incidence probes (NB), operating at 
frequencies of 10MHz and 20MHz, and two pairs of axial 
and circumferential pitch-catch probes (APC and CPC 
respectively) [11]. Fig. 2 illustrates a simplified 
configuration of a 20MHz NB probe and the two pitch-

catch pairs that effectively provide a multi-view of a 
defect. 

The process of analyzing these datasets of inspection 
data to provide defect assessment is currently being 
carried manually by expert analysts. This constitutes a 
time consuming and costly operation as the reactor cannot 
be restarted until the end of the assessment process.  

Currently, a new more advanced tool known as 
BRANDE (BRIMS Advanced Non-Destructive 
Examination) is being deployed which is able to provide 
high resolution data of significantly larger volume. This is 
highlighting the need for an autonomous signal analysis 
process. The next section describes the proposed data-

driven framework that aims to provide decision support 
for the assessment of potential defects within the 
CANDU pressure tubes, in a robust and consistent way.  

3 PROPOSED FRAMEWORK 

3.1 Ultrasonic Inspection Data 

This research focuses on datasets containing the inspection ultrasonic waveform data obtained by the 
20MHz NB, the APC and the CPC probes of the CIGAR tool from sections of the inside surface of 
several pressure tubes. The tool scans the area of interest in axial and rotary increments effectively 
providing a set of three waveforms for each of the individual positions. The recorded waveforms consist 
of sampled amplitudes and are presented in the form of A-Scans (Fig. 3).  

Figure 2.  Orientation of inspection probes. 



Each dataset is obtained from separate areas of interest that are known to contain defects of debris 
fretting type. However, the available A-Scans are unlabeled, i.e. the individual signals are not 
accompanied by the information of whether their location is within or outside the often irregularly shaped 
defective area. Instead, the information that will be used for assessing the performance of the following 
analysis is the verified dimensions and starting position of the defects.  

3.2 Feature Selection 

As the aim of this research is to identify and isolate groups of signals, it is useful to condense the 
information contained in each signal (average of 490 data points of amplitude-time pairs) into small 
subsets of representative features which act as the input to the learning process. Driven by the 
requirement to provide a general system that is able to adapt to the diverse surface pressure tube 
conditions and the irregularly shaped defects, the features are selected based on a set of characteristics 
that aims to facilitate the formation of a non-system-specific procedure.  

The basis of the proposed selection is that the features should be descriptive characteristics of the 
individual signals that do not require explicit threshold-based assumptions about the signal. Therefore, 
descriptive statistical measures that quantitatively summarize the entire signal were chosen instead of 
gating methods or methods based on detection of explicitly defined signal characteristics. Furthermore, 
the signals are not filtered through signal transformation procedures, such as Fourier Transform (FT) and 
Discrete Wavelet Transform (DWT). FT, besides increasing the computational effort, does not provide 
time-related information. Although DWT provides temporal resolution, it would increase the complexity 

Figure 4.  Examples of C-Scans generated for two areas containing defects, utilising the values of 

individual features.  

(b) (a) 

Figure 3.  Examples of A-Scans obtained by different probes from the same position.  



of the system as it is sensitive to the choice of wavelet type as well as the length of the wavelet filter [12]. 

The extracted signal features are: the variance, the maximum value, the minimum value, and the 
index positions of the first instances of maxima and minima within the signal. These features, although 
simple, are showing promising capabilities of carrying information about the condition of the pressure 
tube surface and potential defects. A way of illustrating this information is a two-dimensional top view 
presentation (C-Scan) of the dataset where each pixel represents the physical position of a signal, and its 
intensity represents the value of the corresponding signal’s feature (e.g. Fig. 4).  

Fig. 4a illustrates an example where the condition of the inside surface of the pressure tube enables 
each feature to produce a clear view of the location and shape of the defect. However, this is not the 
general case as the presence of various factors, such as foreign material or/and accumulated oxide on the 
surface of pressure tubes and within the defect, can cause additional signal scattering and reflections 
creating noisy patterns that are more challenging to be addressed by the features (e.g. Fig. 4b). The 
random behavior of these factors poses a problem for modelling and predicting the degree to which they 
affect the performance of the features on each unique pressure tube environment. Therefore, the proposed 
methodology utilizes the full set of equally weighted features to represent the signals in the unsupervised 
learning process. 

3.3 Unsupervised Signal Analysis 

3.3.1 DBSCAN clustering algorithm 

The problem of grouping together unlabeled ultrasonic signals 
is being approached by an unsupervised clustering machine 
learning algorithm called DBSCAN (Density-Based Spatial 
Clustering of Applications with Noise) [13]. DBSCAN is based on 
the idea that data points in dense regions will form a cluster while 
data points from different clusters will be separated by low density 
regions. This approach differs from other clustering algorithms, 
such as k-means [14] and mean shift [15] where the clusters are 
defined by their centers. This causes them to underperform when 
processing non-spherical shaped clusters. An illustration of its 
capabilities, versus k-means and mean shift, is shown on Fig. 5 
which illustrates their inability to handle arbitrarily shaped 
clusters. It also shows another disadvantage of k-means, which is 
the predefined number of clusters. Since the proposed application 
is aimed at handling inspection signals, the algorithm should be 
able to determine the different (a priori unknown) number of 
groups and not forcing the data to fit the assumptions about the 
dataset. The three advantages of DBSCAN which are critical for 
our application are:  

• Detection of arbitrarily shaped clusters 

• No assumption about the number of clusters 

• Detection of noise and outliers 

DBSCAN requires two input parameters (eps: Maximum 
radius of the neighborhood, MinPts: Minimum number of points in 
the eps-neighborhood of a point) and operates by iteratively 
distinguishing each data point as one of the following types (Fig. 
6):  

Figure 6. Example of DBSCAN 

cluster with parameters MinPts: 3 

and eps: radius. 

Figure 5. Comparison of k-

means, Mean Shift and DBSCAN 

[16]. 



 Core point: point with a dense neighborhood 

 Border point: point that belongs to a cluster but its neighborhood is not dense 

 Noise point: point that does not belong to any cluster 

3.3.2 Feature standardization 

After the feature extraction step, each signal is represented by its corresponding set of feature values. 
This enables greater computational efficiency during the subsequent clustering procedure due to the 
inherent reduction of the search space. Preceding the clustering procedure is a pre-processing step which 
reformats the features onto the same scale (feature scaling). This is required by algorithms which use 
distance metrics (such as the Euclidean distance) as the rescaled values of the features will ensure that the 
computed distances are not dominated by features with intrinsically large numeric values. Two common 
approaches to scaling are: normalization and standardization. Normalization is often approached as a case 
of min-max scaling where the feature values are rescaled to a range of [0, 1]. This work uses the 
standardization approach which rescales the feature values so that they are re-centered around zero (zero 
mean) with standard deviation 1. The calculation of the new standardized value 捲鎚痛鳥岫沈岻  of a sample 捲岫沈岻 is 
expressed by Equation 1: 

 捲鎚痛鳥岫沈岻 噺 掴岫日岻貸掴違蹄  (1) 

where 捲違 is the sample mean of the particular feature, and 購 is the corresponding standard deviation. 

3.3.3 Two-stage clustering 

After pre-processing, the standardized features are processed by the first stage of the clustering 
procedure using the DBSCAN algorithm. This step aims at reducing the size of the sample by eliminating 
as many as possible ‘healthy’ signals, and isolate signals of ambiguous nature. The output of this 
clustering is a label attached to each unique feature set, indicating the class/group that it belongs. These 
labels are also mapped back to any samples that did not participate in the calculations because they shared 
one of the unique set of feature values. Given the unbalanced nature of the datasets, i.e. the healthy 
section of the tested area is larger than the defective section, an assumption is made that the group with 
the larger number of members belongs to the healthy section, thus the remaining groups contain potential 
defective areas or noise. Therefore, only the smaller groups of samples will proceed to the next clustering 
stage. 

The samples that proceed at the second stage of the clustering procedure are being represented only 
by their location properties, i.e. axial position and rotary position, and are all considered as potential 
‘defective’ signals. The dual purpose of this stage is to: 

 Eliminate outliers/noise by identifying samples that are not members of the ‘healthy’ group 
and are located in a sparse neighborhood. 

 Group together samples that are not members of the ‘healthy’ group and are located in a 
dense neighborhood. 

This step is essential for formulating the final group comprising of samples which are members of 
the defect. It provides the means to group together signals that although obtained from a defective region, 
might not be initially grouped together; a consequence of the diverse characteristics that constitute a 
defect and their different impact on the reflected signals. Therefore, the location-based clustering is 
aiming at re-grouping those signals together, utilizing the fact they should be located in close proximity.  



The output of this location-based clustering is the updated signal labels: Samples that belong to a 
group are classified as part of the defective region, and samples that were classified as noise/outliers are 
discarded as being members of the healthy region. Fig. 7 provides a high-level flowchart that summarizes 
the steps taken by the clustering procedure. This process can be applied to the different datasets obtained 
by each of the ultrasonic probes (APC, CPC and 20 MHz NB). 

4  RESULTS 

Fig. 8 presents examples of C-Scans after applying the signal clustering procedure to three different 
Indications (areas that contain defects) for each of the datasets obtained by the different ultrasonic probes. 
Each pixel represents the label assigned to the corresponding A-Scan: ‘white’ represents signals classified 
as ‘healthy’ and the darker colors represent ‘defective’ signals. However, there are cases where locations 
of the healthy section are indicated as ‘defective’ (e.g. the grey areas of Fig. 8a APC and Fig. 8b APC). 
This is a result of the different conditions of the pressure tube and the area surrounding the defect, 
affecting heavily the propagating signals. However, the diversity of the probe configuration should enable 
future work to eliminate the ‘noisy’ clusters by fusing the results of the different probes.  

Currently, the algorithm requires manual tuning of a clustering parameter (eps). To explore the 
sensitivity of the system to the values of the parameter, the algorithm was applied to 37 unique indications 
and the results were compared to the provided verified defect dimensions. Fig. 9 presents how many 
(percentage) of the available indications can each of the eps values measure their width in absolute 
difference less than 25%, for each of the ultrasonic probes.  

The results indicate that no single parameter value can satisfy each of the unique indications. The 
amount of information about the defect that is available for extraction from a dataset depends on the 
condition of the pressure tube (foreign material or corrosion), the characteristics of the defect, and the 

Figure 7. Flowchart of the clustering procedure. 

Figure 8. Examples of C-Scans resulted from the signal clustering procedure. 

(a) (b) (c) 



behavior of each inspection probe under the given former conditions. Therefore, there is a need for 
training the algorithm to automatically identify the most appropriate clustering parameter for each case. 

 

5 FURTHER WORK 

The most important step for refining this work is the implementation of a training procedure that will 
create a predictive model for providing the appropriate eps parameter value given some characteristics of 
the tested area. Initially this will require a training dataset containing extracted attributes of known 
processed datasets, along with the eps value that produced the best result on each dataset.  

However, one factor is limiting the current work to approach the training procedure. First, there is a 
need to define what makes a result better than another. By manually assessing the current produced results 
from various eps values, it has been identified that there are cases where the selection of the best result 
can be an ambiguous process. An example of this would be a result that matches the verified defect 
dimensions but also returns large amounts of noise, or a noiseless result that underestimates the defect 
dimensions. It is crucial to standardize the process of selecting the best eps for the known verified defects, 
as they constitute the labels that will be used for the training process of the predictive selection model.  

Furthermore, although the current work developed a framework that can be applied to datasets 
captured by ultrasonic probes of different configurations, it does not utilize the extracted information in a 
unified way. Fusing results obtained from different probes could potentially provide a more informed 
estimation of the defects’ dimensions and shape, as well as elimination of noisy clusters. The fusion of 
these results could be approached by treating each isolated probe model as a classifier and form an 
ensemble learning scheme [17]. 

6 CONCLUSION 

Defects on the inside surface of CANDU pressure tubes facilitate DHC which can lead to coolant 
leakage and can potentially damage the reactor. This work has introduced a new approach for identifying 
these defects through data-driven analysis of the available unlabeled pressure tube ultrasonic inspection 
signals. The framework uses simple descriptive statistics as features and a two-stage unsupervised 
density-based clustering procedure and it was tested on real datasets obtained from the inspection of 
several pressure tubes. Initial results were discussed, with the method showing promise as a means to 
detect and measure defects. Furthermore, this paper discussed the limitations of the proposed system and 
proposed future steps to improve its performance and eliminate the need for manually selecting a 
clustering parameter.  

Figure 9.  Application of different eps values to 37 indications. Percentage of achieved absolute 

width difference below 25%. 
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