3 research outputs found
Insights into bacterial cellulose biosynthesis by functional metagenomics on Antarctic soil samples.
In this study, the mining of an Antarctic soil sample by functional metagenomics allowed the isolation of a cold-adapted protein (RBcel1) that hydrolyzes only carboxymethyl cellulose. The new enzyme is related to family 5 of the glycosyl hydrolase (GH5) protein from Pseudomonas stutzeri (Pst_2494) and does not possess a carbohydrate-binding domain. The protein was produced and purified to homogeneity. RBcel1 displayed an endoglucanase activity, producing cellobiose and cellotriose, using carboxymethyl cellulose as a substrate. Moreover, the study of pH and the thermal dependence of the hydrolytic activity shows that RBcel1 was active from pH 6 to pH 9 and remained significantly active when temperature decreased (18% of activity at 10 degrees C). It is interesting that RBcel1 was able to synthetize non-reticulated cellulose using cellobiose as a substrate. Moreover, by a combination of bioinformatics and enzyme analysis, the physiological relevance of the RBcel1 protein and its mesophilic homologous Pst_2494 protein from P. stutzeri, A1501, was established as the key enzymes involved in the production of cellulose by bacteria. In addition, RBcel1 and Pst_2494 are the two primary enzymes belonging to the GH5 family involved in this process.The ISME Journal advance online publication, 21 May 2009; doi:10.1038/ismej.2009.48