37 research outputs found

    Microbiome applications for pathology: challenges of low microbial biomass samples during diagnostic testing

    Get PDF
    Published online 15 January 2020The human microbiome can play key roles in disease, and diagnostic testing will soon have the ability to examine these roles in the context of clinical applications. Currently, most diagnostic testing in pathology applications focuses on a small number of disease-causing microbes and dismisses the whole microbial community that causes or is modulated by disease. Microbiome modifications have already provided clinically relevant insights in gut and oral diseases, such as irritable bowel disease, but there are currently limitations when clinically examining microbiomes outside of these body sites. This is critical, as the majority of microbial samples used in pathology originate from body sites that contain low concentrations of microbial DNA, including skin, tissue, blood, and urine. These samples, also known as low microbial biomass samples, are difficult to examine without careful consideration and precautions to mitigate contamination and biases. Here, we present the limitations when analysing low microbial biomass samples using current protocols and techniques and highlight the advantages that microbiome testing can offer diagnostics in the future, if the proper precautions are implemented. Specifically, we discuss the sources of contamination and biases that may result in false assessments for these sample types. Finally, we provide recommendations to mitigate contamination and biases from low microbial biomass samples during diagnostic testing, which will be especially important to effectively diagnose and treat patients using microbiome analyses.Caitlin A Selway, Raphael Eisenhofer and Laura S Weyric

    The distribution of the therapeutic monoclonal antibodies cetuximab and trastuzumab within solid tumors

    Get PDF
    <p><b>Abstract</b></p> <p>Background</p> <p>Poor distribution of some anticancer drugs in solid tumors may limit their anti-tumor activity.</p> <p>Methods</p> <p>Here we used immunohistochemistry to quantify the distribution of the therapeutic monoclonal antibodies cetuximab and trastuzumab in relation to blood vessels and to regions of hypoxia in human tumor xenografts. The antibodies were injected into mice implanted with human epidermoid carcinoma A431 or human breast carcinoma MDA-MB-231 transfected with <it>ERBB2 </it>(231-H2N) that express high levels of ErbB1 and ErbB2 respectively, or wild-type MDA-MB-231, which expresses intermediate levels of ErbB1 and low levels of ErbB2.</p> <p>Results</p> <p>The distribution of cetuximab in A431 xenografts and trastuzumab in 231-H2N xenografts was time and dose dependent. At early intervals after injection of 1 mg cetuximab into A431 xenografts, the concentration of cetuximab decreased with increasing distance from blood vessels, but became more uniformly distributed at later times; there remained however limited distribution and binding in hypoxic regions of tumors. Injection of lower doses of cetuximab led to heterogeneous distributions. Similar results were observed with trastuzumab in 231-H2N xenografts. In MDA-MB-231 xenografts, which express lower levels of ErbB1, homogeneity of distribution of cetuximab was achieved more rapidly.</p> <p>Conclusions</p> <p>Cetuximab and trastuzumab distribute slowly, but at higher doses achieve a relatively uniform distribution after about 24 hours, most likely due to their long half-lives in the circulation. There remains poor distribution within hypoxic regions of tumors.</p

    Transient Alteration of Cellular Redox Buffering before Irradiation Triggers Apoptosis in Head and Neck Carcinoma Stem and Non-Stem Cells

    Get PDF
    Background: Head and neck squamous cell carcinoma (HNSCC) is an aggressive and recurrent malignancy owing to intrinsic radioresistance and lack of induction of apoptosis. The major focus of this work was to design a transient glutathione depleting strategy during the course of irradiation of HNSCC in order to overcome their radioresistance associated with redox adaptation. Methodology/Principal Findings: Treatment of SQ20B cells with dimethylfumarate (DMF), a GSH-depleting agent, and L-Buthionine sulfoximine (BSO), an inhibitor of GSH biosynthesis 4 h before a 10 Gy irradiation led to the lowering of the endogenous GSH content to less than 10 % of that in control cells and to the triggering of radiation-induced apoptotic cell death. The sequence of biochemical events after GSH depletion and irradiation included ASK-1 followed by JNK activation which resulted in the triggering of the intrinsic apoptotic pathway through Bax translocation to mitochondria. Conclusions: This transient GSH depletion also triggered radiation-induced cell death in SQ20B stem cells, a key event to overcome locoregional recurrence of HNSCC. Finally, our in vivo data highlight the relevance for further clinical trials o

    A comprehensive overview of radioguided surgery using gamma detection probe technology

    Get PDF
    The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Therapeutic Targeting of the Respiratory Microbiome.

    No full text
    The last decade of research has revolutionized our understanding of respiratory microbiology, revealing that the lungs and airways contain diverse and dynamic microbial communities in health and disease. This "respiratory ecosystem"-a densely interconnected environment of microbial and host interactions-represents a tremendous and under-appreciated source of biological and clinical heterogeneity across patients with acute and chronic lung disease. Unlike other major sources of heterogeneity, such as comorbidities and host genetics, the respiratory microbiome is readily modifiable by clinical interventions, and therefore represents an untapped opportunity for therapeutic manipulation. As a potential "treatable trait" in efforts to subphenotype patients and deliver precision medicine, the respiratory microbiome is a promising therapeutic target. In this Pulmonary Perspective, we identify and discuss multiple challenges, both conceptual and practical, that must be overcome before the respiratory microbiome can be effectively modulated as a therapeutic target. Barriers include: 1) the need to identify specific microbiologic and ecologic "targets" for therapeutic modulation; 2) the need for an improved understanding of the efficacy and persistence of response to respiratory microbiome-modulating interventions; 3) the need for clinicians to be able to access, understand and utilize microbiome data for sub-phenotyping patients, and 4) specific concerns in special populations (including children, patients with chronic lung disease, and critically ill patients). By delineating these barriers, we identify opportunities for prospective research to advance our understanding of the respiratory microbiome, its role in human respiratory disease, and its genuine potential as a therapeutic target
    corecore