381 research outputs found

    Axial stent strut angle influences wall shear stress after stent implantation: analysis using 3D computational fluid dynamics models of stent foreshortening

    Get PDF
    INTRODUCTION: The success of vascular stents in the restoration of blood flow is limited by restenosis. Recent data generated from computational fluid dynamics (CFD) models suggest that the vascular geometry created by an implanted stent causes local alterations in wall shear stress (WSS) that are associated with neointimal hyperplasia (NH). Foreshortening is a potential limitation of stent design that may affect stent performance and the rate of restenosis. The angle created between axially aligned stent struts and the principal direction of blood flow varies with the degree to which the stent foreshortens after implantation. METHODS: In the current investigation, we tested the hypothesis that stent foreshortening adversely influences the distribution of WSS and WSS gradients using time-dependent 3D CFD simulations of normal arteries based on canine coronary artery measurements of diameter and blood flow. WSS and WSS gradients were calculated using conventional techniques in ideal (16 mm) and progressively foreshortened (14 and 12 mm) stented computational vessels. RESULTS: Stent foreshortening increased the intrastrut area of the luminal surface exposed to low WSS and elevated spatial WSS gradients. Progressive degrees of stent foreshortening were also associated with strut misalignment relative to the direction of blood flow as indicated by analysis of near-wall velocity vectors. CONCLUSION: The current results suggest that foreshortening may predispose the stented vessel to a higher risk of neointimal hyperplasia

    Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling

    Get PDF
    BACKGROUND: The success of stent implantation in the restoration of blood flow through areas of vascular narrowing is limited by restenosis. Several recent studies have suggested that the local geometric environment created by a deployed stent may influence regional blood flow characteristics and alter distributions of wall shear stress (WSS) after implantation, thereby rendering specific areas of the vessel wall more susceptible to neointimal hyperplasia and restenosis. Stents are most frequently implanted in curved vessels such as the coronary arteries, but most computational studies examining blood flow patterns through stented vessels conducted to date use linear, cylindrical geometric models. It appears highly probable that restenosis occurring after stent implantation in curved arteries also occurs as a consequence of changes in fluid dynamics that are established immediately after stent implantation. METHODS: In the current investigation, we tested the hypothesis that acute changes in stent-induced regional geometry influence distributions of WSS using 3D coronary artery CFD models implanted with stents that either conformed to or caused straightening of the primary curvature of the left anterior descending coronary artery. WSS obtained at several intervals during the cardiac cycle, time averaged WSS, and WSS gradients were calculated using conventional techniques. RESULTS: Implantation of a stent that causes straightening, rather than conforms to the natural curvature of the artery causes a reduction in the radius of curvature and subsequent increase in the Dean number within the stented region. This straightening leads to modest skewing of the velocity profile at the inlet and outlet of the stented region where alterations in indices of WSS are most pronounced. For example, time-averaged WSS in the proximal portion of the stent ranged from 8.91 to 11.7 dynes/cm(2 )along the pericardial luminal surface and 4.26 to 4.88 dynes/cm(2 )along the myocardial luminal surface of curved coronary arteries as compared to 8.31 dynes/cm(2 )observed throughout the stented region of a straight vessel implanted with an equivalent stent. CONCLUSION: The current results predicting large spatial and temporal variations in WSS at specific locations in curved arterial 3D CFD simulations are consistent with clinically observed sites of restenosis. If the findings of this idealized study translate to the clinical situation, the regional geometry established immediately after stent implantation may predispose portions of the stented vessel to a higher risk of neointimal hyperplasia and subsequent restenosis

    Influence of leaf trichome type, and density on the host plant selection by the greenhouse whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae)

    Get PDF
    Host selection by adult greenhouse whitefly Trialeurodes vaporariorum (Westwood) was assessed on two pelargonium plant cultivars, Pelargonium x domesticum (regal) and P. x hortorum (zonal) using Petri dish bioassay chambers in choice and no-choice tests. Plant characteristics which could influence the oviposition preference of the whitely i.e., type and density of trichomes on the abaxial leaf surface was determined. A strong host preference was observed for the regal compared to the zonal pelargonium by the adult whiteflies. In no-choice tests, adults laid a significantly higher number of eggs on regal than on zonal leaves both at 24 and 48 hours post-exposure, respectively. After exposure to the adult whitefly, the number of 42 eggs in choice tests were similar between cultivars at 24 hours, but were higher for regal at 48 and 72 hours. The total number of trichomes (sng: straight non-glandular + sg: straight glandular) per 0.50 cm2 44 was significantly less on regal (Mean Β± SE sng + sg; 43.1 Β± 1.5) than on zonal leaves (60.5 Β± 1.2); however, the sng trichomes were significantly higher on the zonal (49.4 Β± 0.96) than the regal leaves (28.6 Β± 1.00). Also, the number of sg trichomes was slightly higher for the regal cultivar leaves compared to the zonal, being 14.4 Β± 1.2 and 11.2 Β± 0.5, respectively. Results suggest that the trichome density, type and the ability to express glandular exudates can affect adult whitefly Pelargonium cultivar preference and plays an important role in their host plant selection for oviposition

    A multimodal deep learning framework using local feature representations for face recognition

    Get PDF
    YesThe most recent face recognition systems are mainly dependent on feature representations obtained using either local handcrafted-descriptors, such as local binary patterns (LBP), or use a deep learning approach, such as deep belief network (DBN). However, the former usually suffers from the wide variations in face images, while the latter usually discards the local facial features, which are proven to be important for face recognition. In this paper, a novel framework based on merging the advantages of the local handcrafted feature descriptors with the DBN is proposed to address the face recognition problem in unconstrained conditions. Firstly, a novel multimodal local feature extraction approach based on merging the advantages of the Curvelet transform with Fractal dimension is proposed and termed the Curvelet–Fractal approach. The main motivation of this approach is that theCurvelet transform, a newanisotropic and multidirectional transform, can efficiently represent themain structure of the face (e.g., edges and curves), while the Fractal dimension is one of the most powerful texture descriptors for face images. Secondly, a novel framework is proposed, termed the multimodal deep face recognition (MDFR)framework, to add feature representations by training aDBNon top of the local feature representations instead of the pixel intensity representations. We demonstrate that representations acquired by the proposed MDFR framework are complementary to those acquired by the Curvelet–Fractal approach. Finally, the performance of the proposed approaches has been evaluated by conducting a number of extensive experiments on four large-scale face datasets: the SDUMLA-HMT, FERET, CAS-PEAL-R1, and LFW databases. The results obtained from the proposed approaches outperform other state-of-the-art of approaches (e.g., LBP, DBN, WPCA) by achieving new state-of-the-art results on all the employed datasets

    High Serum Uric Acid Increases the Risk for Nonalcoholic Fatty Liver Disease: A Prospective Observational Study

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) is a common form of chronic liver disease, and serum uric acid is observed to be significantly elevated in NAFLD patients. However, whether this elevation is causal, a bystander, or a consequence of NAFLD remains unclear. We performed a population-based prospective study among the employees of Zhenhai Refining & Chemical Company Ltd., Ningbo, China to investigate whether the elevation of serum uric acid has a casual role for NAFLD. A total of 6890 initially NAFLD-free subjects were followed up for 3 years. Overall, 11.80% (813/6890) subjects developed NAFLD over 3 years of follow-up. The cumulative incidence of NAFLD increased with progressively higher baseline serum uric acid levels (the cumulative incidence was 7.2%, 9.5%, 11.5%, 13.8%, and 17.2% in quintile 1, quintile 2, 3, 4 and 5, respectively; P value for trend <0.001). Cox proportional hazards regression analyses showed that serum uric acid levels were independently and positively associated with the risk for incident NAFLD; the age-, gender- and metabolic syndrome adjusted hazard ratio (95% CI) for the subjects in quintile 2, 3, 4 and 5 versus quintile 1 was 1.18 (0.91–1.54), 1.32 (1.03–1.70), 1.39 (1.09–1.78) and 1.50 (1.18–1.92), respectively. Taken together, our prospective observational study showed that elevation of serum uric acid levels independently predicts increase risk for incident NAFLD

    HP1 Recruitment in the Absence of Argonaute Proteins in Drosophila

    Get PDF
    Highly repetitive and transposable element rich regions of the genome must be stabilized by the presence of heterochromatin. A direct role for RNA interference in the establishment of heterochromatin has been demonstrated in fission yeast. In metazoans, which possess multiple RNA–silencing pathways that are both functionally distinct and spatially restricted, whether RNA silencing contributes directly to heterochromatin formation is not clear. Previous studies in Drosophila melanogaster have suggested the involvement of both the AGO2-dependent endogenous small interfering RNA (endo-siRNA) as well as Piwi-interacting RNA (piRNA) silencing pathways. In order to determine if these Argonaute genes are required for heterochromatin formation, we utilized transcriptional reporters and chromatin immunoprecipitation of the critical factor Heterochromatin Protein 1 (HP1) to monitor the heterochromatic state of piRNA clusters, which generate both endo-siRNAs and the bulk of piRNAs. Surprisingly, we find that mutation of AGO2 or piwi increases silencing at piRNA clusters corresponding to an increase of HP1 association. Furthermore, loss of piRNA production from a single piRNA cluster results in genome-wide redistribution of HP1 and reduction of silencing at a distant heterochromatic site, suggesting indirect effects on HP1 recruitment. Taken together, these results indicate that heterochromatin forms independently of endo-siRNA and piRNA pathways

    Interleukin-17 Contributes to the Pathogenesis of Autoimmune Hepatitis through Inducing Hepatic Interleukin-6 Expression

    Get PDF
    T helper cells that produce IL-17 (Th17 cells) have recently been identified as the third distinct subset of effector T cells. Emerging data suggests that Th17 cells play an important role in the pathogenesis of many liver diseases by regulating innate immunity, adaptive immunity, and autoimmunity. In this study, we examine the role and mechanism of Th17 cells in the pathogenesis of autoimmune hepatitis (AIH). The serum levels of IL-17 and IL-23, as well as the frequency of IL-17+ cells in the liver, were significantly elevated in patients with AIH, compared to other chronic hepatitis and healthy controls. The hepatic expressions of IL-17, IL-23, ROR-Ξ³t, IL-6 and IL-1Ξ² in patients with AIH were also significantly increased and were associated with increased inflammation and fibrosis. IL-17 induces IL-6 expression via the MAPK signaling pathway in hepatocytes, which, in turn, may further stimulate Th17 cells and forms a positive feedback loop. In conclusion, Th17 cells are key effector T cells that regulate the pathogenesis of AIH, via induction of MAPK dependent hepatic IL-6 expression. Blocking the signaling pathway and interrupting the positive feedback loop are potential therapeutic targets for autoimmune hepatitis

    Adult Raphe-Specific Deletion of Lmx1b Leads to Central Serotonin Deficiency

    Get PDF
    The transcription factor Lmx1b is essential for the differentiation and survival of central serotonergic (5-HTergic) neurons during embryonic development. However, the role of Lmx1b in adult 5-HTergic neurons is unknown. We used an inducible Cre-LoxP system to selectively inactivate Lmx1b expression in the raphe nuclei of adult mice. Pet1-CreERT2 mice were generated and crossed with Lmx1bflox/flox mice to obtain Pet1-CreERT2; Lmx1bflox/flox mice (which termed as Lmx1b iCKO). After administration of tamoxifen, the level of 5-HT in the brain of Lmx1b iCKO mice was reduced to 60% of that in control mice, and the expression of tryptophan hydroxylase 2 (Tph2), serotonin transporter (Sert) and vesicular monoamine transporter 2 (Vmat2) was greatly down-regulated. On the other hand, the expression of dopamine and norepinephrine as well as aromatic L-amino acid decarboxylase (Aadc) and Pet1 was unchanged. Our results reveal that Lmx1b is required for the biosynthesis of 5-HT in adult mouse brain, and it may be involved in maintaining normal functions of central 5-HTergic neurons by regulating the expression of Tph2, Sert and Vmat2

    PAR6, A Potential Marker for the Germ Cells Selected to Form Primordial Follicles in Mouse Ovary

    Get PDF
    Partitioning-defective proteins (PAR) are detected to express mainly in the cytoplast, and play an important role in cell polarity. However, we showed here that PAR6, one kind of PAR protein, was localized in the nuclei of mouse oocytes that formed primordial follicles during the perinatal period, suggesting a new role of PAR protein. It is the first time we found that, in mouse fetal ovaries, PAR6 appeared in somatic cell cytoplasm and fell weak when somatic cells invaded germ cell cysts at 17.5 days post coitus (dpc). Meanwhile, the expression of PAR6 was observed in cysts, and became strong in the nuclei of some germ cells at 19.5 dpc and all primordial follicular oocytes at 3 day post parturition (dpp), and then obviously declined when the primordial follicles entered the folliculogenic growth phase. During the primordial follicle pool foundation, the number of PAR6 positive germ cells remained steady and was consistent with that of formed follicles at 3 dpp. There were no TUNEL (apoptosis examination) positive germ cells stained with PAR6 at any time studied. The number of follicles significantly declined when 15.5 dpc ovaries were treated with the anti-PAR6 antibody and PAR6 RNA interference. Carbenoxolone (CBX, a known blocker of gap junctions) inhibited the expression of PAR6 in germ cells and the formation of follicles. Our results suggest that PAR6 could be used as a potential marker of germ cells for the primordial follicle formation, and the expression of PAR6 by a gap junction-dependent process may contribute to the formation of primordial follicles and the maintenance of oocytes at the diplotene stage
    • …
    corecore