23 research outputs found

    Comparison of the structure and activity of glycosylated and asglycosylated human carboxylesterase 1

    Get PDF
    Human Carboxylesterase 1 (hCES1) is the key liver microsomal enzyme responsible for detoxification and metabolism of a variety of clinical drugs. To analyse the role of the single N-linked glycan on the structure and activity of the enzyme, authentically glycosylated and aglycosylated hCES1, generated by mutating asparagine 79 to glutamine, were produced in human embryonic kidney cells. Purified enzymes were shown to be predominantly trimeric in solution by analytical ultracentrifugation. The purified aglycosylated enzyme was found to be more active than glycosylated hCES1 and analysis of enzyme kinetics revealed that both enzymes exhibit positive cooperativity. Crystal structures of hCES1 a catalytically inactive mutant (S221A) and the aglycosylated enzyme were determined in the absence of any ligand or substrate to high resolutions (1.86 Å, 1.48 Å and 2.01 Å, respectively). Superposition of all three structures showed only minor conformational differences with a root mean square deviations of around 0.5 Å over all Cα positions. Comparison of the active sites of these un-liganded enzymes with the structures of hCES1-ligand complexes showed that side-chains of the catalytic triad were pre-disposed for substrate binding. Overall the results indicate that preventing N-glycosylation of hCES1 does not significantly affect the structure or activity of the enzyme

    T-cell Subsets and Antifungal Host Defenses

    Get PDF
    It has been long appreciated that protective immunity against fungal pathogens is dependent on activation of cellular adaptive immune responses represented by T lymphocytes. The T-helper (Th)1/Th2 paradigm has proven to be essential for the understanding of protective adaptive host responses. Studies that have examined the significance of regulatory T cells in fungal infection, and the recent discovery of a new T-helper subset called Th17 have provided crucial information for understanding the complementary roles played by the various T-helper lymphocytes in systemic versus mucosal antifungal host defense. This review provides an overview of the role of the various T-cell subsets during fungal infections and the reciprocal regulation between the T-cell subsets contributing to the tailored host response against fungal pathogens

    Mononuclear phagocyte-mediated antifungal immunity: the role of chemotactic receptors and ligands

    No full text

    The effects of CCR5 inhibition on regulatory T-cell recruitment to colorectal cancer

    No full text
    BACKGROUND: Regulatory T cells (Treg) are enriched in human colorectal cancer (CRC) where they suppress anti-tumour immunity. The chemokine receptor CCR5 has been implicated in the recruitment of Treg from blood into CRC and tumour growth is delayed in CCR5−/− mice, associated with reduced tumour Treg infiltration. METHODS: Tissue and blood samples were obtained from patients undergoing resection of CRC. Tumour-infiltrating lymphocytes were phenotyped for chemokine receptors using flow cytometry. The presence of tissue chemokines was assessed. Standard chemotaxis and suppression assays were performed and the effects of CCR5 blockade were tested in murine tumour models. RESULTS: Functional CCR5 was highly expressed by human CRC infiltrating Treg and CCR5(high) Treg were more suppressive than their CCR5(low) Treg counterparts. Human CRC-Treg were more proliferative and activated than other T cells suggesting that local proliferation could provide an alternative explanation for the observed tumour Treg enrichment. Pharmacological inhibition of CCR5 failed to reduce tumour Treg infiltration in murine tumour models although it did result in delayed tumour growth. CONCLUSIONS: CCR5 inhibition does not mediate anti-tumour effects as a consequence of inhibiting Treg recruitment. Other mechanisms must be found to explain this effect. This has important implications for anti-CCR5 therapy in CRC
    corecore