7,981 research outputs found
Chiral Spin Liquid in a Frustrated Anisotropic Kagome Heisenberg Model
published_or_final_versio
Memory-built-in quantum teleportation with photonic and atomic qubits
The combination of quantum teleportation and quantum memory of photonic
qubits is essential for future implementations of large-scale quantum
communication and measurement-based quantum computation. Both steps have been
achieved separately in many proof-of-principle experiments, but the
demonstration of memory-built-in teleportation of photonic qubits remains an
experimental challenge. Here, we demonstrate teleportation between photonic
(flying) and atomic (stationary) qubits. In our experiment, an unknown
polarization state of a single photon is teleported over 7 m onto a remote
atomic qubit that also serves as a quantum memory. The teleported state can be
stored and successfully read out for up to 8 micro-second. Besides being of
fundamental interest, teleportation between photonic and atomic qubits with the
direct inclusion of a readable quantum memory represents a step towards an
efficient and scalable quantum network.Comment: 19 pages 3 figures 1 tabl
Automatic Brain Tumor Segmentation using Convolutional Neural Networks with Test-Time Augmentation
Automatic brain tumor segmentation plays an important role for diagnosis,
surgical planning and treatment assessment of brain tumors. Deep convolutional
neural networks (CNNs) have been widely used for this task. Due to the
relatively small data set for training, data augmentation at training time has
been commonly used for better performance of CNNs. Recent works also
demonstrated the usefulness of using augmentation at test time, in addition to
training time, for achieving more robust predictions. We investigate how
test-time augmentation can improve CNNs' performance for brain tumor
segmentation. We used different underpinning network structures and augmented
the image by 3D rotation, flipping, scaling and adding random noise at both
training and test time. Experiments with BraTS 2018 training and validation set
show that test-time augmentation helps to improve the brain tumor segmentation
accuracy and obtain uncertainty estimation of the segmentation results.Comment: 12 pages, 3 figures, MICCAI BrainLes 201
Experimental demonstration of a BDCZ quantum repeater node
Quantum communication is a method that offers efficient and secure ways for
the exchange of information in a network. Large-scale quantum communication (of
the order of 100 km) has been achieved; however, serious problems occur beyond
this distance scale, mainly due to inevitable photon loss in the transmission
channel. Quantum communication eventually fails when the probability of a dark
count in the photon detectors becomes comparable to the probability that a
photon is correctly detected. To overcome this problem, Briegel, D\"{u}r, Cirac
and Zoller (BDCZ) introduced the concept of quantum repeaters, combining
entanglement swapping and quantum memory to efficiently extend the achievable
distances. Although entanglement swapping has been experimentally demonstrated,
the implementation of BDCZ quantum repeaters has proved challenging owing to
the difficulty of integrating a quantum memory. Here we realize entanglement
swapping with storage and retrieval of light, a building block of the BDCZ
quantum repeater. We follow a scheme that incorporates the strategy of BDCZ
with atomic quantum memories. Two atomic ensembles, each originally entangled
with a single emitted photon, are projected into an entangled state by
performing a joint Bell state measurement on the two single photons after they
have passed through a 300-m fibre-based communication channel. The entanglement
is stored in the atomic ensembles and later verified by converting the atomic
excitations into photons. Our method is intrinsically phase insensitive and
establishes the essential element needed to realize quantum repeaters with
stationary atomic qubits as quantum memories and flying photonic qubits as
quantum messengers.Comment: 5 pages, 4 figure
The detection of the imprint of filaments on cosmic microwave background lensing
Galaxy redshift surveys, such as 2dF, SDSS, 6df, GAMA and VIPERS, have shown
that the spatial distribution of matter forms a rich web, known as the cosmic
web. The majority of galaxy survey analyses measure the amplitude of galaxy
clustering as a function of scale, ignoring information beyond a small number
of summary statistics. Since the matter density field becomes highly
non-Gaussian as structure evolves under gravity, we expect other statistical
descriptions of the field to provide us with additional information. One way to
study the non-Gaussianity is to study filaments, which evolve non-linearly from
the initial density fluctuations produced in the primordial Universe. In our
study, we report the first detection of CMB (Cosmic Microwave Background)
lensing by filaments and we apply a null test to confirm our detection.
Furthermore, we propose a phenomenological model to interpret the detected
signal and we measure how filaments trace the matter distribution on large
scales through filament bias, which we measure to be around 1.5. Our study
provides a new scope to understand the environmental dependence of galaxy
formation. In the future, the joint analysis of lensing and Sunyaev-Zel'dovich
observations might reveal the properties of `missing baryons', the vast
majority of the gas which resides in the intergalactic medium and has so far
evaded most observations
Strings from geometric tachyon in Rindler space and black hole thermodynamics
The dynamics of a probe particle or wrapped brane moving in the
two-dimensional Rindler space can be described by a time-dependent tachyon
field theory. Using knowledge of tachyon condensation, we learn that the
infalling brane gets thermalised and produces open string pairs at the Hagedorn
temperature when entering into the near-horizon Rindler wedge. It is shown that
the Hagedorn temperature of the infalling brane is equal to the Hawking
temperature of the host black hole detected in the same time coordinate. The
infalling brane will decay completely into closed strings, mainly massive
modes, when it reaches the horizon in infinitely long time as observed by
observers at spatial infinity. Preliminary estimates indicate that the
degeneracy of states of the closed strings emitted from the infalling brane
should be responsible for the increased entropy in the host black hole due to
absorption of the brane.Comment: 12 page
Holographic Superconductors from Einstein-Maxwell-Dilaton Gravity
We construct holographic superconductors from Einstein-Maxwell-dilaton
gravity in 3+1 dimensions with two adjustable couplings and the charge
carried by the scalar field. For the values of and we
consider, there is always a critical temperature at which a second order phase
transition occurs between a hairy black hole and the AdS RN black hole in the
canonical ensemble, which can be identified with the superconducting phase
transition of the dual field theory. We calculate the electric conductivity of
the dual superconductor and find that for the values of and where
is small the dual superconductor has similar properties to the
minimal model, while for the values of and where is
large enough, the electric conductivity of the dual superconductor exhibits
novel properties at low frequencies where it shows a "Drude Peak" in the real
part of the conductivity.Comment: 25 pages, 13 figures; v2, typos corrected; v3, refs added, to appear
in JHE
On-chip adiabatic couplers for broadband quantum-polarization state preparation
© 2018 OSA. We present a unique wavelength-dependent polarization splitter based on asymmetric adiabatic couplers designed for integration with type-II spontaneous parametric-down-conversion sources. The system can be used for preparing different quantum polarization-path states over a broad band
Asymmetric adiabatic couplers for fully-integrated broadband quantum-polarization state preparation
© 2017 The Author(s). Spontaneous parametric down-conversion (SPDC) is a widely used method to generate entangled photons, enabling a range of applications from secure communication to tests of quantum physics. Integrating SPDC on a chip provides interferometric stability, allows to reduce a physical footprint, and opens a pathway to true scalability. However, dealing with different photon polarizations and wavelengths on a chip presents a number of challenging problems. In this work, we demonstrate an on-chip polarization beam-splitter based on z-cut titanium-diffused lithium niobate asymmetric adiabatic couplers (AAC) designed for integration with a type-II SPDC source. Our experimental measurements reveal unique polarization beam-splitting regime with the ability to tune the splitting ratios based on wavelength. In particular, we measured a splitting ratio of 17 dB over broadband regions (>60 nm) for both H-and V-polarized lights and a specific 50%/50% splitting ratio for a cross-polarized photon pair from the AAC. The results show that such a system can be used for preparing different quantum polarization-path states that are controllable by changing the phase-matching conditions in the SPDC over a broad band. Furthermore, we propose a fully integrated electro-optically tunable type-II SPDC polarization-path-entangled state preparation circuit on a single lithium niobate photonic chip
Recommended from our members
Soliton superlattices in twisted hexagonal boron nitride.
Properties of atomic van der Waals heterostructures are profoundly influenced by interlayer coupling, which critically depends on stacking of the proximal layers. Rotational misalignment or lattice mismatch of the layers gives rise to a periodic modulation of the stacking, the moiré superlattice. Provided the superlattice period extends over many unit cells, the coupled layers undergo lattice relaxation, leading to the concentration of strain at line defects - solitons - separating large area commensurate domains. We visualize such long-range periodic superstructures in thin crystals of hexagonal boron nitride using atomic-force microscopy and nano-infrared spectroscopy. The solitons form sub-surface hexagonal networks with periods of a few hundred nanometers. We analyze the topography and infrared contrast of these networks to obtain spatial distribution of local strain and its effect on the infrared-active phonons of hBN
- …