The dynamics of a probe particle or wrapped brane moving in the
two-dimensional Rindler space can be described by a time-dependent tachyon
field theory. Using knowledge of tachyon condensation, we learn that the
infalling brane gets thermalised and produces open string pairs at the Hagedorn
temperature when entering into the near-horizon Rindler wedge. It is shown that
the Hagedorn temperature of the infalling brane is equal to the Hawking
temperature of the host black hole detected in the same time coordinate. The
infalling brane will decay completely into closed strings, mainly massive
modes, when it reaches the horizon in infinitely long time as observed by
observers at spatial infinity. Preliminary estimates indicate that the
degeneracy of states of the closed strings emitted from the infalling brane
should be responsible for the increased entropy in the host black hole due to
absorption of the brane.Comment: 12 page