933 research outputs found

    Quantum advantage by relational queries about physically realizable equivalence classes

    Full text link
    Relational quantum queries are sometimes capable to effectively decide between collections of mutually exclusive elementary cases without completely resolving and determining those individual instances. Thereby the set of mutually exclusive elementary cases is effectively partitioned into equivalence classes pertinent to the respective query. In the second part of the paper, we review recent progress in theoretical certifications (relative to the assumptions made) of quantum value indeterminacy as a means to build quantum oracles for randomness.Comment: 8 Pages, one figure, invited contribution to TopHPC2019, Tehran, Iran, April 22-25, 201

    Multidimensional synthetic chiral-tube lattices via nonlinear frequency conversion.

    Full text link
    Geometrical dimensionality plays a fundamentally important role in the topological effects arising in discrete lattices. Although direct experiments are limited by three spatial dimensions, the research topic of synthetic dimensions implemented by the frequency degree of freedom in photonics is rapidly advancing. The manipulation of light in these artificial lattices is typically realized through electro-optic modulation; yet, their operating bandwidth imposes practical constraints on the range of interactions between different frequency components. Here we propose and experimentally realize all-optical synthetic dimensions involving specially tailored simultaneous short- and long-range interactions between discrete spectral lines mediated by frequency conversion in a nonlinear waveguide. We realize triangular chiral-tube lattices in three-dimensional space and explore their four-dimensional generalization. We implement a synthetic gauge field with nonzero magnetic flux and observe the associated multidimensional dynamics of frequency combs, all within one physical spatial port. We anticipate that our method will provide a new means for the fundamental study of high-dimensional physics and act as an important step towards using topological effects in optical devices operating in the time and frequency domains

    Multi-dimensional synthetic space and state measurement with spectral photonic lattices

    Full text link
    © OSA 2018. We propose and experimentally realize spectral photonic lattices with pumpinduced frequency couplings, which can emulate multi-dimensional dynamics with synthetic gauge fields and enable single-shot measurement of the signal phase and coherence

    Scalable multi-dimensional synthetic space and full state reconstruction in spectral lattices

    Full text link
    © 2018 The Author(s). We propose and experimentally realize spectral photonic lattices with pumpinduced frequency couplings, which can emulate multi-dimensional dynamics with synthetic gauge fields and enable single-shot measurement of the signal phase and coherence

    Characterisation of anhydro-sialic acid transporters from mucosa-associated bacteria

    Get PDF
    Sialic acid (Sia) transporters are critical to the capacity of host-associated bacteria to utilise Sia for growth and/or cell surface modification. While N-acetyl-neuraminic acid (Neu5Ac)-specific transporters have been studied extensively, little is known on transporters dedicated to anhydro-Sia forms such as 2,7-anhydro-Neu5Ac (2,7-AN) or 2,3-dehydro-2-deoxy-Neu5Ac (Neu5Ac2en). Here, we used a Sia-transport-null strain of Escherichia coli to investigate the function of members of anhydro-Sia transporter families previously identified by computational studies. First, we showed that the transporter NanG, from the Glycoside-Pentoside-Hexuronide:cation symporter family, is a specific 2,7-AN transporter, and identified by mutagenesis a crucial functional residue within the putative substrate-binding site. We then demonstrated that NanX transporters, of the Major Facilitator Superfamily, also only transport 2,7-AN and not Neu5Ac2en nor Neu5Ac. Finally, we provided evidence that SiaX transporters, of the Sodium-Solute Symporter superfamily, are promiscuous Neu5Ac/Neu5Ac2en transporters able to acquire either substrate equally well. The characterisation of anhydro-Sia transporters expands our current understanding of prokaryotic Sia metabolism within host-associated microbial communities

    Experimental loophole-free violation of a Bell inequality using entangled electron spins separated by 1.3 km

    Get PDF
    For more than 80 years, the counterintuitive predictions of quantum theory have stimulated debate about the nature of reality. In his seminal work, John Bell proved that no theory of nature that obeys locality and realism can reproduce all the predictions of quantum theory. Bell showed that in any local realist theory the correlations between distant measurements satisfy an inequality and, moreover, that this inequality can be violated according to quantum theory. This provided a recipe for experimental tests of the fundamental principles underlying the laws of nature. In the past decades, numerous ingenious Bell inequality tests have been reported. However, because of experimental limitations, all experiments to date required additional assumptions to obtain a contradiction with local realism, resulting in loopholes. Here we report on a Bell experiment that is free of any such additional assumption and thus directly tests the principles underlying Bell's inequality. We employ an event-ready scheme that enables the generation of high-fidelity entanglement between distant electron spins. Efficient spin readout avoids the fair sampling assumption (detection loophole), while the use of fast random basis selection and readout combined with a spatial separation of 1.3 km ensure the required locality conditions. We perform 245 trials testing the CHSH-Bell inequality S≤2S \leq 2 and find S=2.42±0.20S = 2.42 \pm 0.20. A null hypothesis test yields a probability of p=0.039p = 0.039 that a local-realist model for space-like separated sites produces data with a violation at least as large as observed, even when allowing for memory in the devices. This result rules out large classes of local realist theories, and paves the way for implementing device-independent quantum-secure communication and randomness certification.Comment: Raw data will be made available after publicatio

    Clinical Performance of an Automated Reader in Interpreting Malaria Rapid Diagnostic Tests in Tanzania.

    Get PDF
    Parasitological confirmation of malaria is now recommended in all febrile patients by the World Health Organization (WHO) to reduce inappropriate use of anti-malarial drugs. Widespread implementation of rapid diagnostic tests (RDTs) is regarded as an effective strategy to achieve this goal. However, the quality of diagnosis provided by RDTs in remote rural dispensaries and health centres is not ideal. Feasible RDT quality control programmes in these settings are challenging. Collection of information regarding diagnostic events is also very deficient in low-resource countries. A prospective cohort of consecutive patients aged more than one year from both genders, seeking routine care for febrile episodes at dispensaries located in the Bagamoyo district of Tanzania, were enrolled into the study after signing an informed consent form. Blood samples were taken for thick blood smear (TBS) microscopic examination and malaria RDT (SD Bioline Malaria Antigen Pf/PanTM (SD RDT)). RDT results were interpreted by both visual interpretation and DekiReaderTM device. Results of visual interpretation were used for case management purposes. Microscopy was considered the "gold standard test" to assess the sensitivity and specificity of the DekiReader interpretation and to compare it to visual interpretation. In total, 1,346 febrile subjects were included in the final analysis. The SD RDT, when used in conjunction with the DekiReader and upon visual interpretation, had sensitivities of 95.3% (95% CI, 90.6-97.7) and 94.7% (95% CI, 89.8--97.3) respectively, and specificities of 94.6% (95% CI, 93.5--96.1) and 95.6% (95% CI, 94.2--96.6), respectively to gold standard. There was a high percentage of overall agreement between the two methods of interpretation. The sensitivity and specificity of the DekiReader in interpretation of SD RDTs were comparable to previous reports and showed high agreement to visual interpretation (>98%). The results of the study reflect the situation in real practice and show good performance characteristics of DekiReader on interpreting malaria RDTs in the hands of local laboratory technicians. They also suggest that a system like this could provide great benefits to the health care system. Further studies to look at ease of use by community health workers, and cost benefit of the system are warranted

    Random Numbers Certified by Bell's Theorem

    Full text link
    Randomness is a fundamental feature in nature and a valuable resource for applications ranging from cryptography and gambling to numerical simulation of physical and biological systems. Random numbers, however, are difficult to characterize mathematically, and their generation must rely on an unpredictable physical process. Inaccuracies in the theoretical modelling of such processes or failures of the devices, possibly due to adversarial attacks, limit the reliability of random number generators in ways that are difficult to control and detect. Here, inspired by earlier work on nonlocality based and device independent quantum information processing, we show that the nonlocal correlations of entangled quantum particles can be used to certify the presence of genuine randomness. It is thereby possible to design of a new type of cryptographically secure random number generator which does not require any assumption on the internal working of the devices. This strong form of randomness generation is impossible classically and possible in quantum systems only if certified by a Bell inequality violation. We carry out a proof-of-concept demonstration of this proposal in a system of two entangled atoms separated by approximately 1 meter. The observed Bell inequality violation, featuring near-perfect detection efficiency, guarantees that 42 new random numbers are generated with 99% confidence. Our results lay the groundwork for future device-independent quantum information experiments and for addressing fundamental issues raised by the intrinsic randomness of quantum theory.Comment: 10 pages, 3 figures, 16 page appendix. Version as close as possible to the published version following the terms of the journa

    Pulmonary talc granulomatosis mimicking malignant disease 30 years after last exposure: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Pulmonary talc granulomatosis is a rare disorder characterized by the development of foreign body granuloma secondary to talc exposure. Previous case reports have documented the illness in current intravenous drug users who inject medications intended for oral use. We present a rare case of the disease in a patient with a distant history of heroin abuse who presented initially with history and imaging findings highly suggestive of malignancy.</p> <p>Case presentation</p> <p>A 53-year-old man reported a 4-month history of increasing dyspnea and weight loss. He had a long history of smoking and admission chest X-ray revealed a density in the right hemithorax. Computed tomography confirmed a probable mass with further speculated opacities in both lung fields suspicious for malignant spread. Biopsies obtained using endobronchial ultrasound-guided aspiration returned negative for malignancy and showed bronchial epithelial cells with foreign body giant cell reaction and polarizable birefringent talc crystals.</p> <p>Conclusion</p> <p>This case demonstrates a rare presentation of talc granulomatosis three decades after the last likely exposure. The history and imaging findings in a chronic smoker were initially strongly suggestive of malignant disease, and we recommend that talc-induced lung disease is considered in any patient with multiple scattered pulmonary lesions and a history of intravenous drug use. Confirmation of the disease by biopsy is essential, but unfortunately there are few successful proven management options for patients with worsening disease.</p

    Can spacetime curvature induced corrections to Lamb shift be observable?

    Full text link
    The Lamb shift results from the coupling of an atom to vacuum fluctuations of quantum fields, so corrections are expected to arise when the spacetime is curved since the vacuum fluctuations are modified by the presence of spacetime curvature. Here, we calculate the curvature-induced correction to the Lamb shift outside a spherically symmetric object and demonstrate that this correction can be remarkably significant outside a compact massive astrophysical body. For instance, for a neutron star or a stellar mass black hole, the correction is ∼\sim 25% at a radial distance of 4GM/c24GM/c^2, ∼\sim 16% at 10GM/c210GM/c^2 and as large as ∼\sim 1.6% even at 100GM/c2100GM/c^2, where MM is the mass of the object, GG the Newtonian constant, and cc the speed of light. In principle, we can look at the spectra from a distant compact super-massive body to find such corrections. Therefore, our results suggest a possible way of detecting fundamental quantum effects in astronomical observations.Comment: 13 pages, 3 figures, slight title change, clarifications and more discussions added, version to be published in JHE
    • …
    corecore