21,848 research outputs found

    ASIC3 Channels Integrate Agmatine and Multiple Inflammatory Signals through the Nonproton Ligand Sensing Domain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acid-sensing ion channels (ASICs) have long been known to sense extracellular protons and contribute to sensory perception. Peripheral ASIC3 channels represent natural sensors of acidic and inflammatory pain. We recently reported the use of a synthetic compound, 2-guanidine-4-methylquinazoline (GMQ), to identify a novel nonproton sensing domain in the ASIC3 channel, and proposed that, based on its structural similarity with GMQ, the arginine metabolite agmatine (AGM) may be an endogenous nonproton ligand for ASIC3 channels.</p> <p>Results</p> <p>Here, we present further evidence for the physiological correlation between AGM and ASIC3. Among arginine metabolites, only AGM and its analog arcaine (ARC) activated ASIC3 channels at neutral pH in a sustained manner similar to GMQ. In addition to the homomeric ASIC3 channels, AGM also activated heteromeric ASIC3 plus ASIC1b channels, extending its potential physiological relevance. Importantly, the process of activation by AGM was highly sensitive to mild acidosis, hyperosmolarity, arachidonic acid (AA), lactic acid and reduced extracellular Ca<sup>2+</sup>. AGM-induced ASIC3 channel activation was not through the chelation of extracellular Ca<sup>2+ </sup>as occurs with increased lactate, but rather through a direct interaction with the newly identified nonproton ligand sensing domain. Finally, AGM cooperated with the multiple inflammatory signals to cause pain-related behaviors in an ASIC3-dependent manner.</p> <p>Conclusions</p> <p>Nonproton ligand sensing domain might represent a novel mechanism for activation or sensitization of ASIC3 channels underlying inflammatory pain-sensing under <it>in vivo </it>conditions.</p

    Pulmonary vasospasm in systemic sclerosis: noninvasive techniques for detection

    Get PDF
    In a subgroup of patients with systemic sclerosis (SSc), vasospasm affecting the pulmonary circulation may contribute to worsening respiratory symptoms, including dyspnea. Noninvasive assessment of pulmonary blood flow (PBF), utilizing inert-gas rebreathing (IGR) and dual-energy computed-tomography pulmonary angiography (DE-CTPA), may be useful for identifying pulmonary vasospasm. Thirty-one participants (22 SSc patients and 9 healthy volunteers) underwent PBF assessment with IGR and DE-CTPA at baseline and after provocation with a cold-air inhalation challenge (CACh). Before the study investigations, participants were assigned to subgroups: group A included SSc patients who reported increased breathlessness after exposure to cold air (n = 11), group B included SSc patients without cold-air sensitivity (n = 11), and group C patients included the healthy volunteers. Median change in PBF from baseline was compared between groups A, B, and C after CACh. Compared with groups B and C, in group A there was a significant decline in median PBF from baseline at 10 minutes (−10%; range: −52.2% to 4.0%; P < 0.01), 20 minutes (−17.4%; −27.9% to 0.0%; P < 0.01), and 30 minutes (−8.5%; −34.4% to 2.0%; P < 0.01) after CACh. There was no significant difference in median PBF change between groups B or C at any time point and no change in pulmonary perfusion on DE-CTPA. Reduction in pulmonary blood flow following CACh suggests that pulmonary vasospasm may be present in a subgroup of patients with SSc and may contribute to worsening dyspnea on exposure to cold

    The role of evolutive elastic properties in the performance of a sheet formed spring applied in multimedia car industry

    Get PDF
    The manufacturing process and the behavior of a sheet formed spring manufactured from an aluminum sheet is described and investigated in this work considering the specifications for the in-service conditions. The sheet formed spring is intended to be applied in car multimedia industry to replace bolted connections. Among others, are investigated the roles of the constitutive parameters and the hypothesis of evolutive elastic properties with the plastic work in the multi-step forming process and in working conditions.This research was sponsored by:a) Portugal Incentive System for Research and Technological Development. Project in co-promotion no 36265/2013 (Project HMIExcel - 2013-2015), andb) FCT with the reference project UID/EEA/04436/2013, by FEDER funds through the COMPETE 2020 - Programa Operacional Competitividade e Internacionalizacao (POCI) with the reference project POCI-01-0145-FEDER-006941.info:eu-repo/semantics/publishedVersio

    Epistasis not needed to explain low dN/dS

    Full text link
    An important question in molecular evolution is whether an amino acid that occurs at a given position makes an independent contribution to fitness, or whether its effect depends on the state of other loci in the organism's genome, a phenomenon known as epistasis. In a recent letter to Nature, Breen et al. (2012) argued that epistasis must be "pervasive throughout protein evolution" because the observed ratio between the per-site rates of non-synonymous and synonymous substitutions (dN/dS) is much lower than would be expected in the absence of epistasis. However, when calculating the expected dN/dS ratio in the absence of epistasis, Breen et al. assumed that all amino acids observed in a protein alignment at any particular position have equal fitness. Here, we relax this unrealistic assumption and show that any dN/dS value can in principle be achieved at a site, without epistasis. Furthermore, for all nuclear and chloroplast genes in the Breen et al. dataset, we show that the observed dN/dS values and the observed patterns of amino acid diversity at each site are jointly consistent with a non-epistatic model of protein evolution.Comment: This manuscript is in response to "Epistasis as the primary factor in molecular evolution" by Breen et al. Nature 490, 535-538 (2012

    Genetic algorithms with self-organizing behaviour in dynamic environments

    Get PDF
    Copyright @ 2007 Springer-VerlagIn recent years, researchers from the genetic algorithm (GA) community have developed several approaches to enhance the performance of traditional GAs for dynamic optimization problems (DOPs). Among these approaches, one technique is to maintain the diversity of the population by inserting random immigrants into the population. This chapter investigates a self-organizing random immigrants scheme for GAs to address DOPs, where the worst individual and its next neighbours are replaced by random immigrants. In order to protect the newly introduced immigrants from being replaced by fitter individuals, they are placed in a subpopulation. In this way, individuals start to interact between themselves and, when the fitness of the individuals are close, one single replacement of an individual can affect a large number of individuals of the population in a chain reaction. The individuals in a subpopulation are not allowed to be replaced by individuals of the main population during the current chain reaction. The number of individuals in the subpopulation is given by the number of individuals created in the current chain reaction. It is important to observe that this simple approach can take the system to a self-organization behaviour, which can be useful for GAs in dynamic environments.Financial support was obtained from FAPESP (Proc. 04/04289-6)

    Computational network design from functional specifications

    Get PDF
    Connectivity and layout of underlying networks largely determine agent behavior and usage in many environments. For example, transportation networks determine the flow of traffic in a neighborhood, whereas building floorplans determine the flow of people in a workspace. Designing such networks from scratch is challenging as even local network changes can have large global effects. We investigate how to computationally create networks starting from only high-level functional specifications. Such specifications can be in the form of network density, travel time versus network length, traffic type, destination location, etc. We propose an integer programming-based approach that guarantees that the resultant networks are valid by fulfilling all the specified hard constraints and that they score favorably in terms of the objective function. We evaluate our algorithm in two different design settings, street layout and floorplans to demonstrate that diverse networks can emerge purely from high-level functional specifications

    Towards Emotion Recognition: A Persistent Entropy Application

    Full text link
    Emotion recognition and classification is a very active area of research. In this paper, we present a first approach to emotion classification using persistent entropy and support vector machines. A topology-based model is applied to obtain a single real number from each raw signal. These data are used as input of a support vector machine to classify signals into 8 different emotions (calm, happy, sad, angry, fearful, disgust and surprised)

    Multicentric validation of proteomic biomarkers in urine specific for diabetic nephropathy

    Get PDF
    Background: Urine proteome analysis is rapidly emerging as a tool for diagnosis and prognosis in disease states. For diagnosis of diabetic nephropathy (DN), urinary proteome analysis was successfully applied in a pilot study. The validity of the previously established proteomic biomarkers with respect to the diagnostic and prognostic potential was assessed on a separate set of patients recruited at three different European centers. In this case-control study of 148 Caucasian patients with diabetes mellitus type 2 and duration &gt;= 5 years, cases of DN were defined as albuminuria &gt;300 mg/d and diabetic retinopathy (n = 66). Controls were matched for gender and diabetes duration (n = 82). Methodology/Principal Findings: Proteome analysis was performed blinded using high-resolution capillary electrophoresis coupled with mass spectrometry (CE-MS). Data were evaluated employing the previously developed model for DN. Upon unblinding, the model for DN showed 93.8% sensitivity and 91.4% specificity, with an AUC of 0.948 (95% CI 0.898-0.978). Of 65 previously identified peptides, 60 were significantly different between cases and controls of this study. In &lt;10% of cases and controls classification by proteome analysis not entirely resulted in the expected clinical outcome. Analysis of patient's subsequent clinical course revealed later progression to DN in some of the false positive classified DN control patients. Conclusions: These data provide the first independent confirmation that profiling of the urinary proteome by CE-MS can adequately identify subjects with DN, supporting the generalizability of this approach. The data further establish urinary collagen fragments as biomarkers for diabetes-induced renal damage that may serve as earlier and more specific biomarkers than the currently used urinary albumin
    corecore