84 research outputs found
In-Vivo Biodistribution and Safety of 99mTc-LLP2A-HYNIC in Canine Non-Hodgkin Lymphoma
Theranostic agents are critical for improving the diagnosis and treatment of non-Hodgkin Lymphoma (NHL). The peptidomimetic LLP2A is a novel peptide receptor radiotherapy candidate for treating NHL that expresses the activated α4β1 integrin. Tumor-bearing dogs are an excellent model of human NHL with similar clinical characteristics, behavior, and compressed clinical course. Canine in vivo imaging studies will provide valuable biodistribution and affinity information that reflects a diverse clinical population of lymphoma. This may also help to determine potential dose-limiting radiotoxicity to organs in human clinical trials. To validate this construct in a naturally occurring model of NHL, we performed in-vivo molecular targeted imaging and biodistribution in 3 normal dogs and 5 NHL bearing dogs. 99mTc-LLP2A-HYNIC-PEG and 99mTc-LLP2A-HYNIC were successfully synthesized and had very good labeling efficiency and radiochemical purity. 99mTc-LLP2A-HYNIC and 99mTc-LLP2A-HYNIC-PEG had biodistribution in keeping with their molecular size, with 99mTc-LLP2A-HYNIC-PEG remaining longer in the circulation, having higher tissue uptake, and having more activity in the liver compared to 99mTc-LLP2A-HYNIC. 99mTc-LLP2A-HYNIC was mainly eliminated through the kidneys with some residual activity. Radioactivity was reduced to near-background levels at 6 hours after injection. In NHL dogs, tumor showed moderately increased activity over background, with tumor activity in B-cell lymphoma dogs decreasing after chemotherapy. This compound is promising in the development of targeted drug-delivery radiopharmaceuticals and may contribute to translational work in people affected by non-Hodgkin lymphoma
Loss of Guanylyl Cyclase C (GCC) Signaling Leads to Dysfunctional Intestinal Barrier
Guanylyl Cyclase C (GCC) signaling via uroguanylin (UGN) and guanylin activation is a critical mediator of intestinal fluid homeostasis, intestinal cell proliferation/apoptosis, and tumorigenesis. As a mechanism for some of these effects, we hypothesized that GCC signaling mediates regulation of intestinal barrier function.Paracellular permeability of intestinal segments was assessed in wild type (WT) and GCC deficient (GCC-/-) mice with and without lipopolysaccharide (LPS) challenge, as well as in UGN deficient (UGN-/-) mice. IFNγ and myosin light chain kinase (MLCK) levels were determined by real time PCR. Expression of tight junction proteins (TJPs), phosphorylation of myosin II regulatory light chain (MLC), and STAT1 activation were examined in intestinal epithelial cells (IECs) and intestinal mucosa. The permeability of Caco-2 and HT-29 IEC monolayers, grown on Transwell filters was determined in the absence and presence of GCC RNA interference (RNAi). We found that intestinal permeability was increased in GCC-/- and UGN-/- mice compared to WT, accompanied by increased IFNγ levels, MLCK and STAT1 activation in IECs. LPS challenge promotes greater IFNγ and STAT1 activation in IECs of GCC-/- mice compared to WT mice. Claudin-2 and JAM-A expression were reduced in GCC deficient intestine; the level of phosphorylated MLC in IECs was significantly increased in GCC-/- and UGN-/- mice compared to WT. GCC knockdown induced MLC phosphorylation, increased permeability in IEC monolayers under basal conditions, and enhanced TNFα and IFNγ-induced monolayer hyperpermeability.GCC signaling plays a protective role in the integrity of the intestinal mucosal barrier by regulating MLCK activation and TJ disassembly. GCC signaling activation may therefore represent a novel mechanism in maintaining the small bowel barrier in response to injury
Bilateral Dorsal Cochlear Nucleus Lesions Prevent Acoustic-Trauma Induced Tinnitus in an Animal Model
Animal experiments suggest that chronic tinnitus (“ringing in the ears”) may result from processes that overcompensate for lost afferent input. Abnormally elevated spontaneous neural activity has been found in the dorsal cochlear nucleus (DCN) of animals with psychophysical evidence of tinnitus. However, it has also been reported that DCN ablation fails to reduce established tinnitus. Since other auditory areas have been implicated in tinnitus, the role of the DCN is unresolved. The apparently conflicting electrophysiological and lesion data can be reconciled if the DCN serves as a necessary trigger zone rather than a chronic generator of tinnitus. The present experiment used lesion procedures identical to those that failed to decrease pre-existing tinnitus. The exception was that lesions were done prior to tinnitus induction. Young adult rats were trained and tested using a psychophysical procedure shown to detect tinnitus. Tinnitus was induced by a single unilateral high-level noise exposure. Consistent with the trigger hypothesis, bilateral dorsal DCN lesions made before high-level noise exposure prevented the development of tinnitus. A protective effect stemming from disruption of the afferent pathway could not explain the outcome because unilateral lesions ipsilateral to the noise exposure did not prevent tinnitus and unilateral lesions contralateral to the noise exposure actually exacerbated the tinnitus. The DCN trigger mechanism may involve plastic circuits that, through loss of inhibition, or upregulation of excitation, increase spontaneous neural output to rostral areas such as the inferior colliculus. The increased drive could produce persistent pathological changes in the rostral areas, such as high-frequency bursting and decreased interspike variance, that comprise the chronic tinnitus signal
Energy dissipation via acoustic emission in ductile crack initiation
The final publication is available at Springer via http://dx.doi.org/10.1007/s10704-016-0096-8.This article presents a modeling approach to estimate the energy release due to ductile crack initiation in conjunction to the energy dissipation associated with the formation and propagation of transient stress waves typically referred to as acoustic emission. To achieve this goal, a ductile fracture problem is investigated computationally using the finite element method based on a compact tension geometry under Mode I loading conditions. To quantify the energy dissipation associated with acoustic emission, a crack increment is produced given a pre-determined notch size in a 3D cohesive-based extended finite element model. The computational modeling methodology consists of defining a damage initiation state from static simulations and linking such state to a dynamic formulation used to evaluate wave propagation and related energy redistribution effects. The model relies on a custom traction separation law constructed using full field deformation measurements obtained experimentally using the digital image correlation method. The amount of energy release due to the investigated first crack increment is evaluated through three different approaches both for verification purposes and to produce an estimate of the portion of the energy that radiates away from the crack source in the form of transient waves. The results presented herein propose an upper bound for the energy dissipation associated to acoustic emission, which could assist the interpretation and implementation of relevant nondestructive evaluation methods and the further enrichment of the understanding of effects associated with fracture
- …