79 research outputs found

    HPV infection and immunochemical detection of cell-cycle markers in verrucous carcinoma of the penis

    Get PDF
    Penile verrucous carcinoma is a rare disease and little is known of its aetiology or pathogenesis. In this study we examined cell-cycle proteins expression and correlation with human papillomavirus infection in a series of 15 pure penile verrucous carcinomas from a single centre. Of 148 penile tumours, 15 (10%) were diagnosed as pure verrucous carcinomas. The expression of the cell-cycle-associated proteins p53, p21, RB, p16INK4A and Ki67 were examined by immunohistochemistry. Human papillomavirus infection was determined by polymerase chain reaction to identify a wide range of virus types. The expression of p16INK4A and Ki67 was significantly lower in verrucous carcinoma than in usual type squamous cell carcinoma, whereas the expression of p53, p21 and RB was not significantly different. p53 showed basal expression in contrast to usual type squamous cell carcinoma. Human papillomavirus infection was present in only 3 out of 13 verrucous carcinomas. Unique low-risk, high-risk and mixed viral infections were observed in each of the three cases. In conclusion, lower levels of p16INK4A and Ki67 expressions differentiate penile verrucous carcinoma from usual type squamous cell carcinoma. The low Ki67 index reflects the slow-growing nature of verrucous tumours. The low level of p16INK4A expression and human papillomavirus detection suggests that penile verrucous carcinoma pathogenesis is unrelated to human papillomavirus infection and the oncogenes and tumour suppressor genes classically altered by virus infection.Peer reviewedFinal Accepted Versio

    Alternative HER/PTEN/Akt Pathway Activation in HPV Positive and Negative Penile Carcinomas

    Get PDF
    Copyright: 2011 Stankiewicz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: The pathogenesis of penile squamous cell carcinoma (PSCC) is not well understood, though risk factors include human papillomavirus (HPV). Disruption of HER/PTEN/Akt pathway is present in many cancers; however there is little information on its function in PSCC. We investigated HER family receptors and phosphatase and tension homolog (PTEN) in HPV-positive and negative PSCC and its impact on Akt activation using immunohistochemistry and fluorescent in situ hybridisation (FISH). Methodology/Principal Findings: 148 PSCCs were microarrayed and immunostained for phosphorylated EGFR (pEGFR), HER2, HER3, HER4, phosphorylated Akt (pAkt), Akt1 and PTEN proteins. EGFR and PTEN gene status were also evaluated using FISH. HPV presence was assessed by PCR. pEGFR expression was detected significantly less frequently in HPV-positive than HPV-negative tumours (p = 0.0143). Conversely, HER3 expression was significantly more common in HPV-positive cases (p = 0.0128). HER4, pAkt, Akt and PTEN protein expression were not related to HPV. HER3 (p = 0.0054) and HER4 (p = 0.0002) receptors significantly correlated with cytoplasmic Akt1 immunostaining. All three proteins positively correlated with tumour grade (HER3, p = 0.0029; HER4, p = 0.0118; Akt1, p = 0.0001). pEGFR expression correlated with pAkt but not with tumour grade or stage. There was no EGFR gene amplification. HER2 was not detected. PTEN protein expression was reduced or absent in 62% of tumours but PTEN gene copy loss was present only in 4% of PSCCs. Conclusions/Significance: EGFR, HER3 and HER4 but not HER2 are associated with penile carcinogenesis. HPV-negative tumours tend to express significantly more pEGFR than HPV-positive cancers and this expression correlates with pAkt protein, indicating EGFR as an upstream regulator of Akt signalling in PSCC. Conversely, HER3 expression is significantly more common in HPV-positive cases and positively correlates with cytoplasmic Akt1 expression. HER4 and PTEN protein expression are not related to HPV infection. Our results suggest that PSCC patients could benefit from therapies developed to target HER receptors.Peer reviewedFinal Published versio

    A distal region of the human TGM1 promoter is required for expression in transgenic mice and cultured keratinocytes

    Get PDF
    BACKGROUND: TGM1(transglutaminase 1) is an enzyme that crosslinks the cornified envelope of mature keratinocytes. Appropriate expression of the TGM1 gene is crucial for proper keratinocyte function as inactivating mutations lead to the debilitating skin disease, lamellar ichthyosis. TGM1 is also expressed in squamous metaplasia, a consequence in some epithelia of vitamin A deficiency or toxic insult that can lead to neoplasia. An understanding of the regulation of this gene in normal and abnormal differentiation states may contribute to better disease diagnosis and treatment. METHODS: In vivo requirements for expression of the TGM1 gene were studied by fusing various lengths of promoter DNA to a reporter and injecting the DNA into mouse embryos to generate transgenic animals. Expression of the reporter was ascertained by Western blotting and immunohistochemistry. Further delineation of a transcriptionally important distal region was determined by transfections of progressively shortened or mutated promoter DNA into cultured keratinocytes. RESULTS: In vivo analysis of a reporter transgene driven by the TGM1 promoter revealed that 1.6 kilobases, but not 1.1 kilobases, of DNA was sufficient to confer tissue-specific and cell layer-specific expression. This same region was responsible for reporter expression in tissues undergoing squamous metaplasia as a response to vitamin A deprivation. Mutation of a distal promoter AP1 site or proximal promoter CRE site, both identified as important transcriptional elements in transfection assays, did not prevent appropriate expression. Further searching for transcriptional elements using electrophoretic mobility shift (EMSA) and transfection assays in cultured keratinocytes identified two Sp1 elements in a transcriptionally active region between -1.6 and -1.4 kilobases. While mutation of either Sp1 site or the AP1 site singly had only a small effect, mutation of all three sites eliminated nearly all the transcriptional activity. CONCLUSIONS: A distal region of the TGM1 gene promoter, containing AP1 and Sp1 binding sites, is evolutionarily conserved and responsible for high level expression in transgenic mice and in transfected keratinocyte cultures

    Inhibitor of cyclooxygenase-2 induces cell-cycle arrest in the epithelial cancer cell line via up-regulation of cyclin dependent kinase inhibitor p21

    Get PDF
    Cyclooxygenase-2 is the rate-limiting enzyme in synthesis of prostaglandins and other eicosanoids. Prior reports have shown that inhibition of cyclooxygenase-2 activity, either by selective inhibitors or by antisense oligonucleotide, results in suppression of growth of squamous cell carcinoma cell lines which express high cyclooxygenase-2 levels, such as NA, a cell line established from a squamous cell carcinoma of the tongue. To investigate the mechanisms by which cyclooxygenase-2 inhibitors suppressed growth of these cells, the effects of NS-398, the selective cyclooxygenase-2 inhibitor, on cell-cycle distribution were examined. NS-398 induced G0/G1 cell-cycle arrest in NA cells which expressed cyclooxygenase-2. G0/G1 arrest induced by NS-398 was accompanied by up-regulation of cyclin-dependent kinase inhibitor p21, but not by up-regulation of the other cyclin-dependent kinase inhibitors. Transfection with p21 antisense oligonucleotide inhibited cell-cycle arrest induced by NS-398. Accumulation in G0/G1 was also observed in NA cells transfected with cyclooxygenase-2 antisense oligonucleotide. On the other hand, NS-398-treated NA cells showed a loss of plasma membrane asymmetry, a marker of early events in apoptosis. However, NS-398 did not induce other morphological and biochemical changes related to apoptotic cell death. These results suggest that cyclooxygenase-2 inhibitor induces G0/G1 cell-cycle arrest in NA cells by up-regulation of p21. Our results also suggest that NS-398 is not sufficient to complete the whole process of apoptosis in NA cells, although it induces an early event in apoptosis

    Influence of ocean–atmospheric oscillations on lake ice phenology in eastern North America

    Get PDF
    Our results reveal long-term trends in ice out dates (1836–2013) for twelve lakes in Maine, New Brunswick and New Hampshire, in eastern North America. The trends are remarkably coherent between lakes (rs = 0.462–0.933, p < 0.01) and correlate closely with the March–April (MA) instrumental temperature records from the region (rs = 0.488–0.816, p < 0.01). This correlation permits use of ice out dates as a proxy to extend the shorter MA instrumental record (1876–2013). Mean ice out dates trended progressively earlier during the recovery from the Little Ice Age through to the 1940s, and gradually became later again through to the late 1970s, when ice out dates had returned to values more typical of the late nineteenth century. Post-1970’s ice out dates resumed trending toward earlier dates, with the twenty-first century being characterized by the earliest ice out dates on record. Spectral and wavelet time series analysis indicate that ice out is influenced by several teleconnections including the Quasi-biennial Oscillation, El Niño-Southern Oscillation, North Atlantic Oscillation, as well as a significant correlation between inland lake records and the Atlantic Multidecadal Oscillation. The relative influence of these teleconnections is variable with notable shifts occurring after ~1870, ~1925, and ~1980–2000. The intermittent expression of these cycles in the ice out and MA instrumental record is not only influenced by absolute changes in the intensity of the various teleconnections and other climate drivers, but through phase interference between teleconnections, which periodically damps the various signals
    corecore