59 research outputs found

    Superhydrophilic Functionalization of Microfiltration Ceramic Membranes Enables Separation of Hydrocarbons from Frac and Produced Water

    Get PDF
    The environmental impact of shale oil and gas production by hydraulic fracturing (fracking) is of increasing concern. The biggest potential source of environmental contamination is flowback and produced water, which is highly contaminated with hydrocarbons, bacteria and particulates, meaning that traditional membranes are readily fouled. We show the chemical functionalisation of alumina ceramic microfiltration membranes (0.22 μm pore size) with cysteic acid creates a superhydrophilic surface, allowing for separation of hydrocarbons from frac and produced waters without fouling. The single pass rejection coefficients was >90% for all samples. The separation of hydrocarbons from water when the former have hydrodynamic diameters smaller than the pore size of the membrane is due to the zwitter ionically charged superhydrophilic pore surface. Membrane fouling is essentially eliminated, while a specific flux is obtained at a lower pressure (<2 bar) than that required achieving the same flux for the untreated membrane (4–8 bar)

    A BCR-ABL Mutant Lacking Direct Binding Sites for the GRB2, CBL and CRKL Adapter Proteins Fails to Induce Leukemia in Mice

    Get PDF
    The BCR-ABL tyrosine kinase is the defining feature of chronic myeloid leukemia (CML) and its kinase activity is required for induction of this disease. Current thinking holds that BCR-ABL forms a multi-protein complex that incorporates several substrates and adaptor proteins and is stabilized by multiple direct and indirect interactions. Signaling output from this highly redundant network leads to cellular transformation. Proteins known to be associated with BCR-ABL in this complex include: GRB2, c-CBL, p62DOK, and CRKL. These proteins in turn, link BCR-ABL to various signaling pathways indicated in cellular transformation. In this study we show that a triple mutant of BCR-ABL with mutations of the direct binding sites for GRB2, CBL, p62DOK and CRKL, is defective for transformation of primary hematopoietic cells in vitro and in a murine CML model, while it retains the capacity to induce IL-3 independence in 32D cells. Compared to BCR-ABL, the triple mutant's ability to activate the MAP kinase and PI3-kinase pathways is severely compromised, while STAT5 phosphorylation is maintained, suggesting that the former are crucial for the transformation of primary cells, but dispensable for transformation of factor dependent cell lines. Our data suggest that inhibition of BCR-ABL-induced leukemia by disrupting protein interactions could be possible, but would require blocking of multiple sites

    Caracol, Belize, and Changing Perceptions of Ancient Maya Society

    Full text link

    Nothing Lasts Forever: Environmental Discourses on the Collapse of Past Societies

    Get PDF
    The study of the collapse of past societies raises many questions for the theory and practice of archaeology. Interest in collapse extends as well into the natural sciences and environmental and sustainability policy. Despite a range of approaches to collapse, the predominant paradigm is environmental collapse, which I argue obscures recognition of the dynamic role of social processes that lie at the heart of human communities. These environmental discourses, together with confusion over terminology and the concepts of collapse, have created widespread aporia about collapse and resulted in the creation of mixed messages about complex historical and social processes

    A New Radiocarbon Sequence from Lamanai, Belize: Two Bayesian Models from One of Mesoamerica's Most Enduring Sites

    No full text
    The ancient Maya community of Lamanai, Belize, is well known for its span of occupation from the Early Preclassic (before 1630 BC) to the present. Although most centers in the central and southern Maya Lowlands were abandoned during the Terminal Classic period (AD 750–1000), ceramic and stratigraphic evidence at Lamanai has shown continuous occupation from the start of the Early Preclassic to the Spanish Conquest. In this paper, we present the first complete set of radiocarbon dates from this important site, including 19 new accelerator mass spectrometry (AMS) 14C dates. We use these dates to build Bayesian models for a Terminal Classic structure and an Early Postclassic structure in the site center. This method assists in the refinement of older, conventional dates and provides key chronological information about the site during this volatile time. Adjustments to the standard, uniform distribution model are made using exponential, long-tail, and trapezoidal distributions to incorporate outlier samples and more accurately portray ceramic phases. Because of changes in construction behavior in the Terminal Classic, it is difficult to acquire primary samples from this period, but there remains enough overlap between dates and ceramic phases to deduce persistent occupation at Lamanai during the transition from Late Classic to Postclassic times
    • …
    corecore