109 research outputs found

    Use of Zebrafish to Probe the Divergent Virulence Potentials and Toxin Requirements of Extraintestinal Pathogenic Escherichia coli

    Get PDF
    Extraintestinal pathogenic E. coli (ExPEC) cause an array of diseases, including sepsis, neonatal meningitis, and urinary tract infections. Many putative virulence factors that might modulate ExPEC pathogenesis have been identified through sequencing efforts, epidemiology, and gene expression profiling, but few of these genes have been assigned clearly defined functional roles during infection. Using zebrafish embryos as surrogate hosts, we have developed a model system with the ability to resolve diverse virulence phenotypes and niche-specific restrictions among closely related ExPEC isolates during either localized or systemic infections. In side-by-side comparisons of prototypic ExPEC isolates, we observed an unexpectedly high degree of phenotypic diversity that is not readily apparent using more traditional animal hosts. In particular, the capacity of different ExPEC isolates to persist and multiply within the zebrafish host and cause disease was shown to be variably dependent upon two secreted toxins, Ξ±-hemolysin and cytotoxic necrotizing factor. Both of these toxins appear to function primarily in the neutralization of phagocytes, which are recruited in high numbers to sites of infection where they act as an essential host defense against ExPEC as well as less virulent E. coli strains. These results establish zebrafish as a valuable tool for the elucidation and functional analysis of both ExPEC virulence factors and host defense mechanisms

    Advances in heterometallic ring-opening (co)polymerisation catalysis

    Get PDF
    Truly sustainable plastics require renewable feedstocks coupled with efficient production and end-of-life degradation/recycling processes. Some of the most useful degradable materials are aliphatic polyesters, polycarbonates and polyamides, which are often prepared via ring-opening (co)polymerisation (RO(CO)P) using an organometallic catalyst. While there has been extensive research into ligand development, heterometallic cooperativity offers an equally promising yet underexplored strategy to improve catalyst performance, as heterometallic catalysts often exhibit significant activity and selectivity enhancements compared to their homometallic counterparts. This review describes advances in heterometallic RO(CO)P catalyst design, highlighting the overarching structure-activity trends and reactivity patterns to inform future catalyst design

    Temperature Control of Fimbriation Circuit Switch in Uropathogenic Escherichia coli: Quantitative Analysis via Automated Model Abstraction

    Get PDF
    Uropathogenic Escherichia coli (UPEC) represent the predominant cause of urinary tract infections (UTIs). A key UPEC molecular virulence mechanism is type 1 fimbriae, whose expression is controlled by the orientation of an invertible chromosomal DNA elementβ€”the fim switch. Temperature has been shown to act as a major regulator of fim switching behavior and is overall an important indicator as well as functional feature of many urologic diseases, including UPEC host-pathogen interaction dynamics. Given this panoptic physiological role of temperature during UTI progression and notable empirical challenges to its direct in vivo studies, in silico modeling of corresponding biochemical and biophysical mechanisms essential to UPEC pathogenicity may significantly aid our understanding of the underlying disease processes. However, rigorous computational analysis of biological systems, such as fim switch temperature control circuit, has hereto presented a notoriously demanding problem due to both the substantial complexity of the gene regulatory networks involved as well as their often characteristically discrete and stochastic dynamics. To address these issues, we have developed an approach that enables automated multiscale abstraction of biological system descriptions based on reaction kinetics. Implemented as a computational tool, this method has allowed us to efficiently analyze the modular organization and behavior of the E. coli fimbriation switch circuit at different temperature settings, thus facilitating new insights into this mode of UPEC molecular virulence regulation. In particular, our results suggest that, with respect to its role in shutting down fimbriae expression, the primary function of FimB recombinase may be to effect a controlled down-regulation (rather than increase) of the ON-to-OFF fim switching rate via temperature-dependent suppression of competing dynamics mediated by recombinase FimE. Our computational analysis further implies that this down-regulation mechanism could be particularly significant inside the host environment, thus potentially contributing further understanding toward the development of novel therapeutic approaches to UPEC-caused UTIs

    Early severe inflammatory responses to uropathogenic E. coli predispose to chronic and recurrent urinary tract infection

    Get PDF
    Chronic infections are an increasing problem due to the aging population and the increase in antibiotic resistant organisms. Therefore, understanding the host-pathogen interactions that result in chronic infection is of great importance. Here, we investigate the molecular basis of chronic bacterial cystitis. We establish that introduction of uropathogenic E. coli (UPEC) into the bladders of C3H mice results in two distinct disease outcomes: resolution of acute infection or development of chronic cystitis lasting months. The incidence of chronic cystitis is both host strain and infectious dose-dependent. Further, development of chronic cystitis is preceded by biomarkers of local and systemic acute inflammation at 24 hours post-infection, including severe pyuria and bladder inflammation with mucosal injury, and a distinct serum cytokine signature consisting of elevated IL-5, IL-6, G-CSF, and the IL-8 analog KC. Mice deficient in TLR4 signaling or lymphocytes lack these innate responses and are resistant, to varying degrees, to developing chronic cystitis. Treatment of C3H mice with the glucocorticoid anti-inflammatory drug dexamethasone prior to UPEC infection also suppresses the development of chronic cystitis. Finally, individuals with a history of chronic cystitis, lasting at least 14 days, are significantly more susceptible to redeveloping severe, chronic cystitis upon bacterial challenge. Thus, we have discovered that the development of chronic cystitis in C3H mice by UPEC is facilitated by severe acute inflammatory responses early in infection, which subsequently are predisposing to recurrent cystitis, an insidious problem in women. Overall, these results have significant implications for our understanding of how early host-pathogen interactions at the mucosal surface determines the fate of disease

    Development of cognitive enhancers based on inhibition of insulin-regulated aminopeptidase

    Get PDF
    The peptides angiotensin IV and LVV-hemorphin 7 were found to enhance memory in a number of memory tasks and reverse the performance deficits in animals with experimentally induced memory loss. These peptides bound specifically to the enzyme insulin-regulated aminopeptidase (IRAP), which is proposed to be the site in the brain that mediates the memory effects of these peptides. However, the mechanism of action is still unknown but may involve inhibition of the aminopeptidase activity of IRAP, since both angiotensin IV and LVV-hemorphin 7 are competitive inhibitors of the enzyme. IRAP also has another functional domain that is thought to regulate the trafficking of the insulin-responsive glucose transporter GLUT4, thereby influencing glucose uptake into cells. Although the exact mechanism by which the peptides enhance memory is yet to be elucidated, IRAP still represents a promising target for the development of a new class of cognitive enhancing agents

    Apoptosis- and necrosis-induced changes in light attenuation measured by optical coherence tomography

    Get PDF
    Optical coherence tomography (OCT) was used to determine optical properties of pelleted human fibroblasts in which necrosis or apoptosis had been induced. We analysed the OCT data, including both the scattering properties of the medium and the axial point spread function of the OCT system. The optical attenuation coefficient in necrotic cells decreased from 2.2 ± 0.3Β mmβˆ’1 to 1.3 ± 0.6Β mmβˆ’1, whereas, in the apoptotic cells, an increase to 6.4 ± 1.7Β mmβˆ’1 was observed. The results from cultured cells, as presented in this study, indicate the ability of OCT to detect and differentiate between viable, apoptotic, and necrotic cells, based on their attenuation coefficient. This functional supplement to high-resolution OCT imaging can be of great clinical benefit, enabling on-line monitoring of tissues, e.g. for feedback in cancer treatment

    Live Recombinant Salmonella Typhi Vaccines Constructed to Investigate the Role of rpoS in Eliciting Immunity to a Heterologous Antigen

    Get PDF
    We hypothesized that the immunogenicity of live Salmonella enterica serovar Typhi vaccines expressing heterologous antigens depends, at least in part, on its rpoS status. As part of our project to develop a recombinant attenuated S. Typhi vaccine (RASTyV) to prevent pneumococcal diseases in infants and children, we constructed three RASTyV strains synthesizing the Streptococcus pneumoniae surface protein PspA to test this hypothesis. Each vector strain carried ten engineered mutations designed to optimize safety and immunogenicity. Two S. Typhi vector strains (Ο‡9639 and Ο‡9640) were derived from the rpoS mutant strain Ty2 and one (Ο‡9633) from the RpoS+ strain ISP1820. In Ο‡9640, the nonfunctional rpoS gene was replaced with the functional rpoS gene from ISP1820. Plasmid pYA4088, encoding a secreted form of PspA, was moved into the three vector strains. The resulting RASTyV strains were evaluated for safety in vitro and for immunogenicity in mice. All three RASTyV strains were similar to the live attenuated typhoid vaccine Ty21a in their ability to survive in human blood and human monocytes. They were more sensitive to complement and were less able to survive and persist in sewage and surface water than their wild-type counterparts. Adult mice intranasally immunized with any of the RASTyV strains developed immune responses against PspA and Salmonella antigens. The RpoS+ vaccines induced a balanced Th1/Th2 immune response while the RpoSβˆ’ strain Ο‡9639(pYA4088) induced a strong Th2 immune response. Immunization with any RASTyV provided protection against S. pneumoniae challenge; the RpoS+ strain Ο‡9640(pYA4088) provided significantly greater protection than the ISP1820 derivative, Ο‡9633(pYA4088). In the pre-clinical setting, these strains exhibited a desirable balance between safety and immunogenicity and are currently being evaluated in a Phase 1 clinical trial to determine which of the three RASTyVs has the optimal safety and immunogenicity profile in human hosts

    Diphenylzirconocene

    No full text
    • …
    corecore