262 research outputs found
Knockdown of ZNF268, which Is Transcriptionally Downregulated by GATA-1, Promotes Proliferation of K562 Cells
The human ZNF268 gene encodes a typical KRAB-C2H2 zinc finger protein that may participate in hematopoiesis and leukemogenesis. A recent microarray study revealed that ZNF268 expression continuously decreases during erythropoiesis. However, the molecular mechanisms underlying regulation of ZNF268 during hematopoiesis are not well understood. Here we found that GATA-1, a master regulator of erythropoiesis, repressed the promoter activity and transcription of ZNF268. Electrophoretic mobility shift assays and chromatin immunoprecipitation assays showed that GATA-1 directly bound to a GATA binding site in the ZNF268 promoter in vitro and in vivo. Knockdown of ZNF268 in K562 erythroleukemia cells with specific siRNA accelerated cellular proliferation, suppressed apoptosis, and reduced expression of erythroid-specific developmental markers. It also promoted growth of subcutaneous K562-derived tumors in nude mice. These results suggest that ZNF268 is a crucial downstream target and effector of GATA-1. They also suggest the downregulation of ZNF268 by GATA-1 is important in promoting the growth and suppressing the differentiation of K562 erythroleukemia cells
A Developmental Systems Perspective on Epistasis: Computational Exploration of Mutational Interactions in Model Developmental Regulatory Networks
The way in which the information contained in genotypes is translated into complex phenotypic traits (i.e. embryonic expression patterns) depends on its decoding by a multilayered hierarchy of biomolecular systems (regulatory networks). Each layer of this hierarchy displays its own regulatory schemes (i.e. operational rules such as +/β feedback) and associated control parameters, resulting in characteristic variational constraints. This process can be conceptualized as a mapping issue, and in the context of highly-dimensional genotype-phenotype mappings (GPMs) epistatic events have been shown to be ubiquitous, manifested in non-linear correspondences between changes in the genotype and their phenotypic effects. In this study I concentrate on epistatic phenomena pervading levels of biological organization above the genetic material, more specifically the realm of molecular networks. At this level, systems approaches to studying GPMs are specially suitable to shed light on the mechanistic basis of epistatic phenomena. To this aim, I constructed and analyzed ensembles of highly-modular (fully interconnected) networks with distinctive topologies, each displaying dynamic behaviors that were categorized as either arbitrary or functional according to early patterning processes in the Drosophila embryo. Spatio-temporal expression trajectories in virtual syncytial embryos were simulated via reaction-diffusion models. My in silico mutational experiments show that: 1) the average fitness decay tendency to successively accumulated mutations in ensembles of functional networks indicates the prevalence of positive epistasis, whereas in ensembles of arbitrary networks negative epistasis is the dominant tendency; and 2) the evaluation of epistatic coefficients of diverse interaction orders indicates that, both positive and negative epistasis are more prevalent in functional networks than in arbitrary ones. Overall, I conclude that the phenotypic and fitness effects of multiple perturbations are strongly conditioned by both the regulatory architecture (i.e. pattern of coupled feedback structures) and the dynamic nature of the spatio-temporal expression trajectories displayed by the simulated networks
Proteasomal Degradation of TRIM5Ξ± during Retrovirus Restriction
The host protein TRIM5Ξ± inhibits retroviral infection at an early post-penetration stage by targeting the incoming viral capsid. While the detailed mechanism of restriction remains unclear, recent studies have implicated the activity of cellular proteasomes in the restriction of retroviral reverse transcription imposed by TRIM5Ξ±. Here, we show that TRIM5Ξ± is rapidly degraded upon encounter of a restriction-susceptible retroviral core. Inoculation of TRIM5Ξ±-expressing human 293T cells with a saturating level of HIV-1 particles resulted in accelerated degradation of the HIV-1-restrictive rhesus macaque TRIM5Ξ± protein but not the nonrestrictive human TRIM5Ξ± protein. Exposure of cells to HIV-1 also destabilized the owl monkey restriction factor TRIMCyp; this was prevented by addition of the inhibitor cyclosporin A and was not observed with an HIV-1 virus containing a mutation in the capsid protein that relieves restriction by TRIMCyp IVHIV. Likewise, human TRIM5Ξ± was rapidly degraded upon encounter of the restriction-sensitive N-tropic murine leukemia virus (N-MLV) but not the unrestricted B-MLV. Pretreatment of cells with proteasome inhibitors prevented the HIV-1-induced loss of both rhesus macaque TRIM5Ξ± and TRIMCyp proteins. We also detected degradation of endogenous TRIM5Ξ± in rhesus macaque cells following HIV-1 infection. We conclude that engagement of a restriction-sensitive retrovirus core results in TRIM5Ξ± degradation by a proteasome-dependent mechanism
Use of an innovative model to evaluate mobility in seniors with lower-limb amputations of vascular origin: a pilot study
<p>Abstract</p> <p>Background</p> <p>The mobility of older individuals has often been only partially assessed, without considering all important aspects such as potential (available) versus effective (used) mobilities and the physical and psychosocial factors that modulate them. This study proposes a new model for evaluating mobility that considers all important aspects, applied here to lower-limb amputees with vascular origin. This model integrates the concepts of potential mobility (e.g. balance, speed of movement), effective mobility (e.g. life habits, movements in living areas) and factors that modulate these two types of mobility (e.g. strength, sensitivity, social support, depression). The main objective was to characterize potential and effective mobility as well as mobility modulators in a small sample of people with lower-limb amputations of vascular origin with different characteristics. The second objective of this pilot study was to assess the feasibility of measuring all variables in the model in a residential context.</p> <p>Methods</p> <p>An observational and transversal design was used with a heterogeneous sample of 10 participants with a lower-limb amputation of vascular origin, aged 51 to 83, assessed between eight and 18 months after discharge from an acute care hospital. A questionnaire of participant characteristics and 16 reliable and valid measurements were used.</p> <p>Results</p> <p>The results show that the potential mobility indicators do not accurately predict effective mobility, i.e., participants who perform well on traditional measures done in the laboratory or clinic are not always those who perform well in the real world. The model generated 4 different profiles (categories) of participants ranging from reduced to excellent potential mobility and low to excellent effective mobility, and characterized the modulating factors. The evaluations were acceptable in terms of the time taken (three hours) and the overall measurements, with a few exceptions, which were modified to optimize the data collected and the classification of the participants. For the population assessed, the results showed that some of the negative modulators (particularly living alone, no rehabilitation, pain, limited social support, poor muscle strength) played an important role in reducing effective mobility.</p> <p>Conclusion</p> <p>The first use of the model revealed interesting data that add to our understanding of important aspects linked to potential and effective mobility as well as modulators. The feasibility of measuring all variables in the model in a residential context was demonstrated. A study with a large number of participants is now warranted to rigorously characterize mobility levels of lower-limb amputees with vascular origin.</p
Validation of food store environment secondary data source and the role of neighborhood deprivation in Appalachia, Kentucky
Background
Based on the need for better measurement of the retail food environment in rural settings and to examine how deprivation may be unique in rural settings, the aims of this study were: 1) to validate one commercially available data source with direct field observations of food retailers; and 2) to examine the association between modified neighborhood deprivation and the modified retail food environment score (mRFEI).
Methods
Secondary data were obtained from a commercial database, InfoUSA in 2011, on all retail food outlets for each census tract. In 2011, direct observation identifying all listed food retailers was conducted in 14 counties in Kentucky. Sensitivity and positive predictive values (PPV) were compared. Neighborhood deprivation index was derived from American Community Survey data. Multinomial regression was used to examine associations between neighborhood deprivation and the mRFEI score (indicator of retailers selling healthy foods such as low-fat foods and fruits and vegetables relative to retailers selling more energy dense foods).
Results
The sensitivity of the commercial database was high for traditional food retailers (grocery stores, supermarkets, convenience stores), with a range of 0.96-1.00, but lower for non-traditional food retailers; dollar stores (0.20) and FarmerΓ’β¬β’s Markets (0.50). For traditional food outlets, the PPV for smaller non-chain grocery stores was 38%, and large chain supermarkets was 87%. Compared to those with no stores in their neighborhoods, those with a supercenter [OR 0.50 (95% CI 0.27. 0.97)] or convenience store [OR 0.67 (95% CI 0.51, 0.89)] in their neighborhood have lower odds of living in a low deprivation neighborhood relative to a high deprivation neighborhood.
Conclusion
The secondary commercial database used in this study was insufficient to characterize the rural retail food environment. Our findings suggest that neighborhoods with high neighborhood deprivation are associated with having certain store types that may promote less healthy food options
Array-Comparative Genomic Hybridization Reveals Loss of SOCS6 Is Associated with Poor Prognosis in Primary Lung Squamous Cell Carcinoma
BACKGROUND: Primary tumor recurrence commonly occurs after surgical resection of lung squamous cell carcinoma (SCC). Little is known about the genes driving SCC recurrence. METHODS: We used array comparative genomic hybridization (aCGH) to identify genes affected by copy number alterations that may be involved in SCC recurrence. Training and test sets of resected primary lung SCC were assembled. aCGH was used to determine genomic copy number in a training set of 62 primary lung SCCs (28 with recurrence and 34 with no evidence of recurrence) and the altered copy number of candidate genes was confirmed by quantitative PCR (qPCR). An independent test set of 72 primary lung SCCs (20 with recurrence and 52 with no evidence of recurrence) was used for biological validation. mRNA expression of candidate genes was studied using qRT-PCR. Candidate gene promoter methylation was evaluated using methylation microarrays and Sequenom EpiTYPER analysis. RESULTS: 18q22.3 loss was identified by aCGH as being significantly associated with recurrence (pβ=β0.038). Seven genes within 18q22.3 had aCGH copy number loss associated with recurrence but only SOCS6 copy number was both technically replicated by qPCR and biologically validated in the test set. SOCS6 copy number loss correlated with reduced mRNA expression in the study samples and in the samples with copy number loss, there was a trend for increased methylation, albeit non-significant. Overall survival was significantly poorer in patients with SOCS6 loss compared to patients without SOCS6 loss in both the training (30 vs. 43 months, pβ=β0.023) and test set (27 vs. 43 months, pβ=β0.010). CONCLUSION: Reduced copy number and mRNA expression of SOCS6 are associated with disease recurrence in primary lung SCC and may be useful prognostic biomarkers
The DNA Damage Response Pathway Contributes to the Stability of Chromosome III Derivatives Lacking Efficient Replicators
In eukaryotic chromosomes, DNA replication initiates at multiple origins. Large inter-origin gaps arise when several adjacent origins fail to fire. Little is known about how cells cope with this situation. We created a derivative of Saccharomyces cerevisiae chromosome III lacking all efficient origins, the 5ORIΞ-ΞR fragment, as a model for chromosomes with large inter-origin gaps. We used this construct in a modified synthetic genetic array screen to identify genes whose products facilitate replication of long inter-origin gaps. Genes identified are enriched in components of the DNA damage and replication stress signaling pathways. Mrc1p is activated by replication stress and mediates transduction of the replication stress signal to downstream proteins; however, the response-defective mrc1AQ allele did not affect 5ORIΞ-ΞR fragment maintenance, indicating that this pathway does not contribute to its stability. Deletions of genes encoding the DNA-damage-specific mediator, Rad9p, and several components shared between the two signaling pathways preferentially destabilized the 5ORIΞ-ΞR fragment, implicating the DNA damage response pathway in its maintenance. We found unexpected differences between contributions of components of the DNA damage response pathway to maintenance of ORIΞ chromosome derivatives and their contributions to DNA repair. Of the effector kinases encoded by RAD53 and CHK1, Chk1p appears to be more important in wild-type cells for reducing chromosomal instability caused by origin depletion, while Rad53p becomes important in the absence of Chk1p. In contrast, RAD53 plays a more important role than CHK1 in cell survival and replication fork stability following treatment with DNA damaging agents and hydroxyurea. Maintenance of ORIΞ chromosomes does not depend on homologous recombination. These observations suggest that a DNA-damage-independent mechanism enhances ORIΞ chromosome stability. Thus, components of the DNA damage response pathway contribute to genome stability, not simply by detecting and responding to DNA template damage, but also by facilitating replication of large inter-origin gaps
- β¦