1,031 research outputs found
A Regularized Graph Layout Framework for Dynamic Network Visualization
Many real-world networks, including social and information networks, are
dynamic structures that evolve over time. Such dynamic networks are typically
visualized using a sequence of static graph layouts. In addition to providing a
visual representation of the network structure at each time step, the sequence
should preserve the mental map between layouts of consecutive time steps to
allow a human to interpret the temporal evolution of the network. In this
paper, we propose a framework for dynamic network visualization in the on-line
setting where only present and past graph snapshots are available to create the
present layout. The proposed framework creates regularized graph layouts by
augmenting the cost function of a static graph layout algorithm with a grouping
penalty, which discourages nodes from deviating too far from other nodes
belonging to the same group, and a temporal penalty, which discourages large
node movements between consecutive time steps. The penalties increase the
stability of the layout sequence, thus preserving the mental map. We introduce
two dynamic layout algorithms within the proposed framework, namely dynamic
multidimensional scaling (DMDS) and dynamic graph Laplacian layout (DGLL). We
apply these algorithms on several data sets to illustrate the importance of
both grouping and temporal regularization for producing interpretable
visualizations of dynamic networks.Comment: To appear in Data Mining and Knowledge Discovery, supporting material
(animations and MATLAB toolbox) available at
http://tbayes.eecs.umich.edu/xukevin/visualization_dmkd_201
Diel turbidity cycles in a headwater stream: evidence of nocturnal bioturbation?
Purpose: A small number of recent studies have linked daily cycles in stream turbidity to nocturnal bioturbation by aquatic fauna, principally crayfish, and demonstrated this process can significantly impact upon water quality under baseflow conditions. Adding to this limited body of research, we use high-resolution water quality monitoring data to investigate evidence of diel turbidity cycles in a lowland, headwater stream with a known signal crayfish (Pacifastacus leniusculus) population and explore a range of potential causal mechanisms. Materials and methods: Automatic bankside monitoring stations measured turbidity and other water quality parameters at 30-min resolution at three locations on the River Blackwater, Norfolk, UK during 2013. Specifically, we focused on two 20-day periods of baseflow conditions during January and April 2013 which displayed turbidity trends typical of winter and spring seasons, respectively. The turbidity time-series, which were smoothed with 6.5 hour Savitzky-Golay filters to highlight diel trends, were correlated against temperature, stage, dissolved oxygen and pH to assess the importance of abiotic influences on turbidity. Turbidity was also calibrated against suspended particulate matter (SPM) over a wide range of values via linear regression. Results and discussion: Pronounced diel turbidity cycles were found at two of the three sites under baseflow conditions during April. Spring night-time turbidity values consistently peaked between 21:00 and 04:00 with values increasing by ~10 nephelometric turbidity units (NTU) compared with the lowest recorded daytime values which occurred between 10:00 and 14:00. This translated into statistically significant increases in median midnight SPM concentration of up to 76% compared with midday, with night-time (18:00 – 05:30) SPM loads also up to 30% higher than that recorded during the daytime (06:00 – 17:30). Relating turbidity to other water quality parameters exhibiting diel cycles revealed there to be neither any correlation that might indicate a causal link, nor any obvious mechanistic connections to explain the temporal turbidity trends. Diel turbidity cycles were less prominent at all sites during the winter. Conclusions: Considering the seasonality and timing of elevated turbidity, visual observations of crayfish activity, and an absence of mechanistic connections with other water quality parameters, the results presented here are consistent with the hypothesis that nocturnal bioturbation is responsible for generating diel turbidity cycles under baseflow conditions in headwater streams. However, further research in a variety of fluvial environments is required to better assess the spatial extent, importance and causal mechanisms of this phenomenon
A re-appraisal of the reliability of the 20 m multi-stage shuttle run test
This is the author's PDF version of an article published in European journal of applied physiology in 2007. The original publication is available at www.springerlink.co
Direct generation of photon triplets using cascaded photon-pair sources
Non-classical states of light, such as entangled photon pairs and number
states, are essential for fundamental tests of quantum mechanics and optical
quantum technologies. The most widespread technique for creating these quantum
resources is the spontaneous parametric down-conversion (SPDC) of laser light
into photon pairs. Conservation of energy and momentum in this process, known
as phase-matching, gives rise to strong correlations which are used to produce
two-photon entanglement in various degrees of freedom. It has been a
longstanding goal of the quantum optics community to realise a source that can
produce analogous correlations in photon triplets, but of the many approaches
considered, none have been technically feasible. In this paper we report the
observation of photon triplets generated by cascaded down-conversion. Here each
triplet originates from a single pump photon, and therefore quantum
correlations will extend over all three photons in a way not achievable with
independently created photon pairs. We expect our photon-triplet source to open
up new avenues of quantum optics and become an important tool in quantum
technologies. Our source will allow experimental interrogation of novel quantum
correlations, the post-selection free generation of tripartite entanglement
without post- selection and the generation of heralded entangled-photon pairs
suitable for linear optical quantum computing. Two of the triplet photons have
a wavelength matched for optimal transmission in optical fibres, ideally suited
for three-party quantum communication. Furthermore, our results open
interesting regimes of non-linear optics, as we observe spontaneous
down-conversion pumped by single photons, an interaction also highly relevant
to optical quantum computing.Comment: 7 pages, 3 figures, 1 table; accepted by Natur
ACE-inhibitors and Angiotensin-2 Receptor Blockers are not associated with severe SARS-COVID19 infection in a multi-site UK acute Hospital Trust
Aims:
The SARS‐CoV‐2 virus binds to the angiotensin‐converting enzyme 2 (ACE2) receptor for cell entry. It has been suggested that angiotensin‐converting enzyme inhibitors (ACEi) and angiotensin II receptor blockers (ARB), which are commonly used in patients with hypertension or diabetes and may raise tissue ACE2 levels, could increase the risk of severe COVID‐19 infection.
Methods and results:
We evaluated this hypothesis in a consecutive cohort of 1200 acute inpatients with COVID‐19 at two hospitals with a multi‐ethnic catchment population in London (UK). The mean age was 68 ± 17 years (57% male) and 74% of patients had at least one comorbidity. Overall, 415 patients (34.6%) reached the primary endpoint of death or transfer to a critical care unit for organ support within 21 days of symptom onset. A total of 399 patients (33.3%) were taking ACEi or ARB. Patients on ACEi/ARB were significantly older and had more comorbidities. The odds ratio for the primary endpoint in patients on ACEi and ARB, after adjustment for age, sex and co‐morbidities, was 0.63 (95% confidence interval 0.47–0.84, P < 0.01).
Conclusions:
There was no evidence for increased severity of COVID‐19 in hospitalised patients on chronic treatment with ACEi or ARB. A trend towards a beneficial effect of ACEi/ARB requires further evaluation in larger meta‐analyses and randomised clinical trials
Photon Management in Two-Dimensional Disordered Media
Elaborating reliable and versatile strategies for efficient light coupling
between free space and thin films is of crucial importance for new technologies
in energy efficiency. Nanostructured materials have opened unprecedented
opportunities for light management, notably in thin-film solar cells. Efficient
coherent light trapping has been accomplished through the careful design of
plasmonic nanoparticles and gratings, resonant dielectric particles and
photonic crystals. Alternative approaches have used randomly-textured surfaces
as strong light diffusers to benefit from their broadband and wide-angle
properties. Here, we propose a new strategy for photon management in thin films
that combines both advantages of an efficient trapping due to coherent optical
effects and broadband/wide-angle properties due to disorder. Our approach
consists in the excitation of electromagnetic modes formed by multiple light
scattering and wave interference in two-dimensional random media. We show, by
numerical calculations, that the spectral and angular responses of thin films
containing disordered photonic patterns are intimately related to the in-plane
light transport process and can be tuned through structural correlations. Our
findings, which are applicable to all waves, are particularly suited for
improving the absorption efficiency of thin-film solar cells and can provide a
novel approach for high-extraction efficiency light-emitting diodes
One Problem, Many Solutions: Simple Statistical Approaches Help Unravel the Complexity of the Immune System in an Ecological Context
The immune system is a complex collection of interrelated and overlapping solutions to the problem of disease. To deal with this complexity, researchers have devised multiple ways to measure immune function and to analyze the resulting data. In this way both organisms and researchers employ many tactics to solve a complex problem. One challenge facing ecological immunologists is the question of how these many dimensions of immune function can be synthesized to facilitate meaningful interpretations and conclusions. We tackle this challenge by employing and comparing several statistical methods, which we used to test assumptions about how multiple aspects of immune function are related at different organizational levels. We analyzed three distinct datasets that characterized 1) species, 2) subspecies, and 3) among- and within-individual level differences in the relationships among multiple immune indices. Specifically, we used common principal components analysis (CPCA) and two simpler approaches, pair-wise correlations and correlation circles. We also provide a simple example of how these techniques could be used to analyze data from multiple studies. Our findings lead to several general conclusions. First, relationships among indices of immune function may be consistent among some organizational groups (e.g. months over the annual cycle) but not others (e.g. species); therefore any assumption of consistency requires testing before further analyses. Second, simple statistical techniques used in conjunction with more complex multivariate methods give a clearer and more robust picture of immune function than using complex statistics alone. Moreover, these simpler approaches have potential for analyzing comparable data from multiple studies, especially as the field of ecological immunology moves towards greater methodological standardization
No Detectable Fertility Benefit from a Single Additional Mating in Wild Stalk-Eyed Flies
Background: Multiple mating by female insects is widespread, and the explanation(s) for repeated mating by females has been the subject of much discussion. Females may profit from mating multiply through direct material benefits that increase their own reproductive output, or indirect genetic benefits that increase offspring fitness. One particular direct benefit that has attracted significant attention is that of fertility assurance, as females often need to mate multiply to achieve high fertility. This hypothesis has never been tested in a wild insect population.Methodology/Principal Findings: Female Malaysian stalk-eyed flies (Teleopsis dalmanni) mate repeatedly during their lifetime, and have been shown to be sperm limited under both laboratory and field conditions. Here we ask whether receiving an additional mating alleviates sperm limitation in wild females. In our experiment one group of females received a single additional mating, while a control group received an interrupted, and therefore unsuccessful, mating. Females that received an additional mating did not lay more fertilised eggs in total, nor did they lay proportionately more fertilised eggs. Female fertility declined significantly through time, demonstrating that females were sperm limited. However, receipt of an additional mating did not significantly alter the rate of this decline.Conclusions/Significance: Our data suggest that the fertility consequences of a single additional mating were small. We discuss this effect (or lack thereof), and suggest that it is likely to be attributed to small ejaculate size, a high proportion of failed copulations, and the presence of X-linked meiotic drive in this species
Case–Control Study of an Acute Aflatoxicosis Outbreak, Kenya, 2004
Objectives: During January–June 2004, an aflatoxicosis outbreak in eastern Kenya resulted in 317 cases and 125 deaths. We conducted a case–control study to identify risk factors for contamination of implicated maize and, for the first time, quantitated biomarkers associated with acute aflatoxicosis. Design: We administered questionnaires regarding maize storage and consumption and obtained maize and blood samples from participants. Participants: We recruited 40 case-patients with aflatoxicosis and 80 randomly selected controls to participate in this study. Evaluations/Measurements: We analyzed maize for total aflatoxins and serum for aflatoxin B(1)–lysine albumin adducts and hepatitis B surface antigen. We used regression and survival analyses to explore the relationship between aflatoxins, maize consumption, hepatitis B surface antigen, and case status. Results: Homegrown (not commercial) maize kernels from case households had higher concentrations of aflatoxins than did kernels from control households [geometric mean (GM) = 354.53 ppb vs. 44.14 ppb; p = 0.04]. Serum adduct concentrations were associated with time from jaundice to death [adjusted hazard ratio = 1.3; 95% confidence interval (CI), 1.04–1.6]. Case patients had positive hepatitis B titers [odds ratio (OR) = 9.8; 95% CI, 1.5–63.1] more often than controls. Case patients stored wet maize (OR = 3.5; 95% CI, 1.2–10.3) inside their homes (OR = 12.0; 95% CI, 1.5–95.7) rather than in granaries more often than did controls. Conclusion: Aflatoxin concentrations in maize, serum aflatoxin B(1)–lysine adduct concentrations, and positive hepatitis B surface antigen titers were all associated with case status. Relevance: The novel methods and risk factors described may help health officials prevent future outbreaks of aflatoxicosis
- …