24 research outputs found

    Regional Differences in the Sensitivity of MEG for Interictal Spikes in Epilepsy

    Get PDF
    MEG interictal spikes as recorded in epilepsy patients are a reflection of intracranial interictal activity. This study investigates the relationship between the estimated sources of MEG spikes and the location, distribution and size of interictal spikes in the invasive ECoG of a group of 38 epilepsy patients that are monitored for pre-surgical evaluation. An amplitude/surface area measure is defined to quantify and rank ECoG spikes. It is found that all MEG spikes are associated with an ECoG spike that is among the three highest ranked in a patient. Among the different brain regions considered, the fronto-orbital, inter-hemispheric, tempero-lateral and central regions stand out. In an accompanying simulation study it is shown that for hypothesized extended sources of larger sizes, as suggested by the data, source location, orientation and curvature can partly explain the observed sensitivity of MEG for interictal spikes

    Sensitivity of MEG and EEG to Source Orientation

    Get PDF
    An important difference between magnetoencephalography (MEG) and electroencephalography (EEG) is that MEG is insensitive to radially oriented sources. We quantified computationally the dependency of MEG and EEG on the source orientation using a forward model with realistic tissue boundaries. Similar to the simpler case of a spherical head model, in which MEG cannot see radial sources at all, for most cortical locations there was a source orientation to which MEG was insensitive. The median value for the ratio of the signal magnitude for the source orientation of the lowest and the highest sensitivity was 0.06 for MEG and 0.63 for EEG. The difference in the sensitivity to the source orientation is expected to contribute to systematic differences in the signal-to-noise ratio between MEG and EEG.National Institutes of Health (U.S.) (Grant NS057500)National Institutes of Health (U.S.) (Grant NS037462)National Institutes of Health (U.S.) (Grant HD040712)National Center for Research Resources (U.S.) (P41RR14075)Mind Research Networ

    Simulating Clinical Trials With and Without Intracranial EEG Data.

    Get PDF
    OBJECTIVE: It is currently unknown if knowledge of clinically silent (electrographic) seizures improves the statistical efficiency of clinical trials. METHODS: Using data obtained from 10 patients with chronically implanted subdural electrodes over an average of 1 year, a Monte Carlo bootstrapping simulation study was performed to estimate the statistical power of running a clinical trial based on A) patient reported seizures with intracranial EEG (icEEG) confirmation, B) all patient reported events, or C) all icEEG confirmed seizures. A "drug" was modeled as having 10%, 20%, 30%, 40% and 50% efficacy in 1000 simulated trials each. Outcomes were represented as percentage of trials that achieved p<0.05 using Fisher Exact test for 50%-responder rates (RR50), and Wilcoxon Rank Sum test for median percentage change (MPC). RESULTS: At each simulated drug strength, the MPC method showed higher power than RR50. As drug strength increased, statistical power increased. For all cases except RR50 with drug of 10% efficacy, using patient reported events (with or without icEEG confirmation) was not as statistically powerful as using all available intracranially confirmed seizures (p<0.001). SIGNIFICANCE: This study demonstrated using simulation that additional accuracy in seizure detection using chronically implanted icEEG improves statistical power of clinical trials. Newer invasive and noninvasive seizure detection devices may have the potential to provide greater statistical efficiency, accelerate drug discovery and lower trial costs

    Is seizure frequency variance a predictable quantity?

    Get PDF
    Background: There is currently no formal method for predicting the range expected in an individual's seizure counts. Having access to such a prediction would be of benefit for developing more efficient clinical trials, but also for improving clinical care in the outpatient setting. Methods: Using three independently collected patient diary datasets, we explored the predictability of seizure frequency. Three independent seizure diary databases were explored: SeizureTracker (n = 3016), Human Epilepsy Project (n = 93), and NeuroVista (n = 15). First, the relationship between mean and standard deviation in seizure frequency was assessed. Using that relationship, a prediction for the range of possible seizure frequencies was compared with a traditional prediction scheme commonly used in clinical trials. A validation dataset was obtained from a separate data export of SeizureTracker to further verify the predictions. Results: A consistent mathematical relationship was observed across datasets. The logarithm of the average seizure count was linearly related to the logarithm of the standard deviation with a high correlation (R2 > 0.83). The three datasets showed high predictive accuracy for this log-log relationship of 94%, compared with a predictive accuracy of 77% for a traditional prediction scheme. The independent validation set showed that the log-log predicted 94% of the correct ranges while the RR50 predicted 77%. Conclusion: Reliably predicting seizure frequency variability is straightforward based on knowledge of mean seizure frequency, across several datasets. With further study, this may help to increase the power of RCTs, and guide clinical practice
    corecore