139 research outputs found

    The aa-theorem and the Asymptotics of 4D Quantum Field Theory

    Full text link
    We study the possible IR and UV asymptotics of 4D Lorentz invariant unitary quantum field theory. Our main tool is a generalization of the Komargodski-Schwimmer proof for the aa-theorem. We use this to rule out a large class of renormalization group flows that do not asymptote to conformal field theories in the UV and IR. We show that if the IR (UV) asymptotics is described by perturbation theory, all beta functions must vanish faster than (1/lnμ)1/2(1/|\ln\mu|)^{1/2} as μ0\mu \to 0 (μ\mu \to \infty). This implies that the only possible asymptotics within perturbation theory is conformal field theory. In particular, it rules out perturbative theories with scale but not conformal invariance, which are equivalent to theories with renormalization group pseudocycles. Our arguments hold even for theories with gravitational anomalies. We also give a non-perturbative argument that excludes theories with scale but not conformal invariance. This argument holds for theories in which the stress-energy tensor is sufficiently nontrivial in a technical sense that we make precise.Comment: 41 pages, 2 figures. v2: Arguments clarified, some side comments corrected, connection to previous work by Jack and Osborn described, conclusions unaffecte

    Factorization Properties of Soft Graviton Amplitudes

    Full text link
    We apply recently developed path integral resummation methods to perturbative quantum gravity. In particular, we provide supporting evidence that eikonal graviton amplitudes factorize into hard and soft parts, and confirm a recent hypothesis that soft gravitons are modelled by vacuum expectation values of products of certain Wilson line operators, which differ for massless and massive particles. We also investigate terms which break this factorization, and find that they are subleading with respect to the eikonal amplitude. The results may help in understanding the connections between gravity and gauge theories in more detail, as well as in studying gravitational radiation beyond the eikonal approximation.Comment: 35 pages, 5 figure

    On the Trace Anomaly and the Anomaly Puzzle in N=1 Pure Yang-Mills

    Full text link
    The trace anomaly of the energy-momentum tensor is usually quoted in the form which is proportional to the beta function of the theory. However, there are in general many definitions of gauge couplings depending on renormalization schemes, and hence many beta functions. In particular, N=1 supersymmetric pure Yang-Mills has the holomorphic gauge coupling whose beta function is one-loop exact, and the canonical gauge coupling whose beta function is given by the Novikov-Shifman-Vainshtein-Zakharov beta function. In this paper, we study which beta function should appear in the trace anomaly in N=1 pure Yang-Mills. We calculate the trace anomaly by employing the N=4 regularization of N=1 pure Yang-Mills. It is shown that the trace anomaly is given by one-loop exact form if the composite operator appearing in the trace anomaly is renormalized in a preferred way. This result gives the simplest resolution to the anomaly puzzle in N=1 pure Yang-Mills. The most important point is to examine in which scheme the quantum action principle is valid, which is crucial in the derivation of the trace anomaly.Comment: 25 pages, 1 figure; v2:slight correction in sec.5, minor addition in appendi

    Notes on Operator Equations of Supercurrent Multiplets and the Anomaly Puzzle in Supersymmetric Field Theories

    Full text link
    Recently, Komargodski and Seiberg have proposed a new type of supercurrent multiplet which contains the energy-momentum tensor and the supersymmetry current consistently. In this paper we study quantum properties of the supercurrent in renormalizable field theories. We point out that the new supercurrent gives a quite simple resolution to the classic problem, called the anomaly puzzle, that the Adler-Bardeen theorem applied to an R-symmetry current is inconsistent with all order corrections to β\beta functions. We propose an operator equation for the supercurrent in all orders of perturbation theory, and then perform several consistency checks of the equation. The operator equation we propose is consisitent with the one proposed by Shifman and Vainshtein, if we take some care in interpreting the meaning of non-conserved currents.Comment: 28 pages; v2:clarifications and references added, some minor change

    Black Holes in Gravity with Conformal Anomaly and Logarithmic Term in Black Hole Entropy

    Full text link
    We present a class of exact analytic and static, spherically symmetric black hole solutions in the semi-classical Einstein equations with Weyl anomaly. The solutions have two branches, one is asymptotically flat and the other asymptotically de Sitter. We study thermodynamic properties of the black hole solutions and find that there exists a logarithmic correction to the well-known Bekenstein-Hawking area entropy. The logarithmic term might come from non-local terms in the effective action of gravity theories. The appearance of the logarithmic term in the gravity side is quite important in the sense that with this term one is able to compare black hole entropy up to the subleading order, in the gravity side and in the microscopic statistical interpretation side.Comment: Revtex, 10 pages. v2: minor changes and to appear in JHE

    Running Gauge Coupling in Asymptotically Safe Quantum Gravity

    Full text link
    We investigate the non-perturbative renormalization group behavior of the gauge coupling constant using a truncated form of the functional flow equation for the effective average action of the Yang-Mills-gravity system. We find a non-zero quantum gravity correction to the standard Yang-Mills beta function which has the same sign as the gauge boson contribution. Our results fit into the picture according to which Quantum Einstein Gravity (QEG) is asymptotically safe, with a vanishing gauge coupling constant at the non-trivial fixed point.Comment: 27 page

    Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory

    Get PDF
    This article is meant as a summary and introduction to the ideas of effective field theory as applied to gravitational systems. Contents: 1. Introduction 2. Effective Field Theories 3. Low-Energy Quantum Gravity 4. Explicit Quantum Calculations 5. ConclusionsComment: 56 pages, 2 figures, JHEP style, Invited review to appear in Living Reviews of Relativit

    Quantum gravitational corrections for spinning particles

    Get PDF
    We calculate the quantum corrections to the gauge-invariant gravitational potentials of spinning particles in flat space, induced by loops of both massive and massless matter fields of various types. While the corrections to the Newtonian potential induced by massless conformal matter for spinless particles are well-known, and the same corrections due to massless minimally coupled scalars [Class. Quant. Grav. 27 (2010) 245008], massless non-conformal scalars [Phys. Rev. D 87 (2013) 104027] and massive scalars, fermions and vector bosons [Phys. Rev. D 91 (2015) 064047] have been recently derived, spinning particles receive additional corrections which are the subject of the present work. We give both fully analytic results valid for all distances from the particle, and present numerical results as well as asymptotic expansions. At large distances from the particle, the corrections due to massive fields are exponentially suppressed in comparison to the corrections from massless fields, as one would expect. However, a surprising result of our analysis is that close to the particle itself, on distances comparable to the Compton wavelength of the massive fields running in the loops, these corrections can be enhanced with respect to the massless case

    Radiative contribution to neutrino masses and mixing in μν\mu\nuSSM

    Full text link
    In an extension of the minimal supersymmetric standard model (popularly known as the μν\mu\nuSSM), three right handed neutrino superfields are introduced to solve the μ\mu-problem and to accommodate the non-vanishing neutrino masses and mixing. Neutrino masses at the tree level are generated through RR-parity violation and seesaw mechanism. We have analyzed the full effect of one-loop contributions to the neutrino mass matrix. We show that the current three flavour global neutrino data can be accommodated in the μν\mu\nuSSM, for both the tree level and one-loop corrected analyses. We find that it is relatively easier to accommodate the normal hierarchical mass pattern compared to the inverted hierarchical or quasi-degenerate case, when one-loop corrections are included.Comment: 51 pages, 14 figures (58 .eps files), expanded introduction, other minor changes, references adde

    The Interplay Between GUT and Flavour Symmetries in a Pati-Salam x S4 Model

    Get PDF
    Both Grand Unified symmetries and discrete flavour symmetries are appealing ways to describe apparent structures in the gauge and flavour sectors of the Standard Model. Both symmetries put constraints on the high energy behaviour of the theory. This can give rise to unexpected interplay when building models that possess both symmetries. We investigate on the possibility to combine a Pati-Salam model with the discrete flavour symmetry S4S_4 that gives rise to quark-lepton complementarity. Under appropriate assumptions at the GUT scale, the model reproduces fermion masses and mixings both in the quark and in the lepton sectors. We show that in particular the Higgs sector and the running Yukawa couplings are strongly affected by the combined constraints of the Grand Unified and family symmetries. This in turn reduces the phenomenologically viable parameter space, with high energy mass scales confined to a small region and some parameters in the neutrino sector slightly unnatural. In the allowed regions, we can reproduce the quark masses and the CKM matrix. In the lepton sector, we reproduce the charged lepton masses, including bottom-tau unification and the Georgi-Jarlskog relation as well as the two known angles of the PMNS matrix. The neutrino mass spectrum can present a normal or an inverse hierarchy, and only allowing the neutrino parameters to spread into a range of values between λ2\lambda^{-2} and λ2\lambda^2, with λ0.2\lambda\simeq0.2. Finally, our model suggests that the reactor mixing angle is close to its current experimental bound.Comment: 62 pages, 4 figures; references added, version accepted for publication in JHE
    corecore