7 research outputs found

    Four-electron deoxygenative reductive coupling of carbon monoxide at a single metal site

    Get PDF
    Carbon dioxide is the ultimate source of the fossil fuels that are both central to modern life and problematic: their use increases atmospheric levels of greenhouse gases, and their availability is geopolitically constrained. Using carbon dioxide as a feedstock to produce synthetic fuels might, in principle, alleviate these concerns. Although many homogeneous and heterogeneous catalysts convert carbon dioxide to carbon monoxide, further deoxygenative coupling of carbon monoxide to generate useful multicarbon products is challenging. Molybdenum and vanadium nitrogenases are capable of converting carbon monoxide into hydrocarbons under mild conditions, using discrete electron and proton sources. Electrocatalytic reduction of carbon monoxide on copper catalysts also uses a combination of electrons and protons, while the industrial Fischer–Tropsch process uses dihydrogen as a combined source of electrons and electrophiles for carbon monoxide coupling at high temperatures and pressures6. However, these enzymatic and heterogeneous systems are difficult to probe mechanistically. Molecular catalysts have been studied extensively to investigate the elementary steps by which carbon monoxide is deoxygenated and coupled, but a single metal site that can efficiently induce the required scission of carbon–oxygen bonds and generate carbon–carbon bonds has not yet been documented. Here we describe a molybdenum compound, supported by a terphenyl–diphosphine ligand, that activates and cleaves the strong carbon–oxygen bond of carbon monoxide, enacts carbon–carbon coupling, and spontaneously dissociates the resulting fragment. This complex four-electron transformation is enabled by the terphenyl–diphosphine ligand, which acts as an electron reservoir and exhibits the coordinative flexibility needed to stabilize the different intermediates involved in the overall reaction sequence. We anticipate that these design elements might help in the development of efficient catalysts for converting carbon monoxide to chemical fuels, and should prove useful in the broader context of performing complex multi-electron transformations at a single metal site

    Reversible Formation of Alkyl Radicals at [Fe<inf>4</inf>S<inf>4</inf>] Clusters and Its Implications for Selectivity in Radical SAM Enzymes

    No full text
    Copyright © 2020 American Chemical Society. All kingdoms of life use the transient 5′-deoxyadenosyl radical (5′-dAdoâ ) to initiate a wide range of difficult chemical reactions. Because of its high reactivity, the 5′-dAdo•must be generated in a controlled manner to abstract a specific H atom and avoid unproductive reactions. In radical S-Adenosylmethionine (SAM) enzymes, the 5′-dAdo•is formed upon reduction of SAM by an [Fe4S4] cluster. An organometallic precursor featuring an Fe-C bond between the [Fe4S4] cluster and the 5′-dAdo group was recently characterized and shown to be competent for substrate radical generation, presumably via Fe-C bond homolysis. Such reactivity is without precedent for Fe-S clusters. Here, we show that synthetic [Fe4S4]-Alkyl clusters undergo Fe-C bond homolysis when the alkylated Fe site has a suitable coordination number, thereby providing support for the intermediacy of organometallic species in radical SAM enzymes. Addition of pyridine donors to [(IMes)3Fe4S4-R]+ clusters (R = alkyl or benzyl; IMes = 1,3-dimesitylimidazol-2-ylidene) generates Râ , ultimately forming R-R coupled hydrocarbons. This process is facile at room temperature and allows for the generation of highly reactive radicals including primary carbon radicals. Mechanistic studies, including use of the 5-hexenyl radical clock, demonstrate that Fe-C bond homolysis occurs reversibly. Using these experimental insights and kinetic simulations, we evaluate the circumstances in which an organometallic intermediate can direct the 5′-dAdo•toward productive H-Atom abstraction. Our findings demonstrate that reversible homolysis of even weak M-C bonds is a feasible protective mechanism for the 5′-dAdo•that can allow selective X-H bond activation in both radical SAM and adenosylcobalamin enzymes

    An [Fe<inf>4</inf>S<inf>4</inf>]<sup>3+</sup>-Alkyl Cluster Stabilized by an Expanded Scorpionate Ligand

    No full text
    Copyright Š 2020 American Chemical Society. Alkyl-ligated iron-sulfur clusters in the [Fe4S4]3+ charge state have been proposed as short-lived intermediates in a number of enzymatic reactions. To better understand the properties of these intermediates, we have prepared and characterized the first synthetic [Fe4S4]3+-Alkyl cluster. Isolation of this highly reactive species was made possible by the development of an expanded scorpionate ligand suited to the encapsulation of cuboidal clusters. Like the proposed enzymatic intermediates, this synthetic [Fe4S4]3+-Alkyl cluster adopts an S = 1/2 ground state with giso > 2. MÜssbauer spectroscopic studies reveal that the alkylated Fe has an unusually low isomer shift, which reflects the highly covalent Fe-C bond and the localization of Fe3+ at the alkylated site in the solid state. Paramagnetic 1H NMR studies establish that this valence localization persists in solution at physiologically relevant temperatures, an effect that has not been observed for [Fe4S4]3+ clusters outside of a protein. These findings establish the unusual electronic-structure effects imparted by the strong-field alkyl ligand and lay the foundation for understanding the electronic structures of [Fe4S4]3+-Alkyl intermediates in biology

    Metal-Ligand Cooperation at Phosphine-Based Acceptor Pincer Ligands

    No full text
    Acceptor ligands, which predominantly withdraw electron density from a transition metal center, often engage in weak metal-ligand interactions. These can be stabilized by flanking the acceptor moiety with strongly binding phosphines in a pincer motif, affording more robust complexes in which bond activation and/or bond-forming events can take place while preserving the integrity of the molecule as a whole. This contribution highlights recent developments in this area. Compounds incorporating a borane at the central position are discussed first, followed by compounds incorporating an electrophilic C = E (E = C, O, N) π-bond. In both cases, recent examples highlight the ability of these ligands to (1) respond to electronic changes at the metal by modifying their binding mode and (2) accept a nucleophilic fragment (e.g., hydride) from substrate molecules. Applications of acceptor pincer ligands as cooperative catalysts are discussed

    Structural and functional characterization of the hydrogenase-maturation HydF protein

    No full text
    International audience[FeFe] hydrogenase (HydA) catalyzes interconversion between 2H+ and H2 at an active site composed of a [4Fe-4S] cluster linked to a 2Fe subcluster that harbors CO, CN− and azapropanedithiolate (adt2−) ligands. HydE, HydG and HydF are the maturases specifically involved in the biosynthesis of the 2Fe subcluster. Using ligands synthesized by HydE and HydG, HydF assembles a di-iron precursor of the 2Fe subcluster and transfers it to HydA for maturation. Here we report the first X-ray structure of HydF with its [4Fe-4S] cluster. The cluster is chelated by three cysteines and an exchangeable glutamate, which allows the binding of synthetic mimics of the 2Fe subcluster. [Fe2(adt)(CO)4(CN)2]2− is proposed to be the true di-iron precursor because, when bound to HydF, it matures HydA and displays features in Fourier transform infrared (FTIR) spectra that are similar to those of the native HydF active intermediate. A new route toward the generation of artificial hydrogenases, as combinations of HydF and such biomimetic complexes, is proposed on the basis of the observed hydrogenase activity of chemically modified HydF
    corecore