25 research outputs found

    Excitation wavelength dependent fluorescence anisotropy of eosin-myosin adducts. Evidence for anisotropic rotations.

    No full text
    Steady-state and time-resolved fluorescence anisotropy measurements of eosin in solution and eosin-5-maleimide bound to purified myosin were made to study localized motions of the "head region" of this protein. The lifetime and apparent Debye rotational relaxation times of eosin in aqueous solution are essentially invariant with changes in excitation wavelength. In more viscous solvents, such as propylene glycol/water mixtures, the apparent Debye rotational relaxation times of eosin differ upon excitation in the regions of positive and negative anisotropy. Using eosin attached to the SH-1 thiol of the myosin head differing rotational modes of the bound probe were detected, dependent upon excitation wavelength. The main features of the anisotropy data for eosin-myosin are consistent with the existence of a 'crevice' or 'pocket' in the myosin head. A model is presented which allows estimation of the ratio of distinct rotational diffusion terms (selected by different excitation wavelengths) that produce both the observed steady-state anisotropy and differential phase results

    Effect of tape stripping and adjuvants on immune response after intradermal DNA electroporation

    No full text
    PURPOSE: DNA vaccines require both efficient delivery methods and appropriate adjuvants. Based on their mechanisms of action, we hypothesised that some adjuvants could enhance vaccine immunogenicity or direct the response towards Th1 profile after intradermal DNA electroporation. METHODS: After intradermal electroporation of plasmid DNA encoding luciferase, mice received hyaluronidase, imiquimod, monophosphoryl lipid A or were tape stripped in order to modulate the immune response against the encoded protein. We measured total immunoglobulin G, IgG1, IgG2a titres and the cytokines produced by splenocyte cultures to assess both humoral and cellular response. The effect of tape stripping on the response against intradermally delivered ovalbumin protein was also assessed. RESULTS: Neither hyaluronidase nor imiquimod improved the immune response against the encoded luciferase. Monophosphoryl lipid A did not modify the cytokines production but increased the anti-luciferase IgG2a titres. Tape stripping significantly increased anti-luciferase IgG2a and IFN-gamma responses. It also enhanced the humoral response after intradermal injection of the ovalbumin protein. CONCLUSIONS: Tape stripping is able to increase the Th1 immune response against both DNA and protein vaccines. Therefore, tape stripping appears to have interesting adjuvant effect on intradermal vaccination

    The EASI project--improving the effectiveness and quality of image-guided surgery

    No full text
    In recent years, advances in computer technology and a significant increase in the accuracy of medical imaging have made it possible to develop systems that can assist the clinician in diagnosis, planning, and treatment. This paper deals with an area that is generally referred to as computer-assisted surgery, image-directed surgery, or image-guided surgery. We report the research, development, and clinical validation performed since January 1996 in the European Applications in Surgical Interventions (EASI) project, which is funded by the European Commission in their "4th Framework Telematics Applications for Health" program. The goal of this project is the improvement of the effectiveness and quality of image-guided neurosurgery of the brain and image-guided vascular surgery of abdominal aortic aneurysms, while at the same time reducing patient risks and overall cost. We have developed advanced prototype systems for preoperative surgical planning and intraoperative surgical navigation, and we have extensively clinically validated these systems. The prototype systems and the clinical validation results are described in this paper.status: publishe

    Combined cimetidine and temozolomide, compared with temozolomide alone: significant increases in survival in nude mice bearing U373 human glioblastoma multiforme orthotopic xenografts.

    No full text
    OBJECT: Malignant gliomas consist of both heterogeneous proliferating and migrating cell subpopulations, with migrating glioma cells exhibiting less sensitivity to antiproliferative or proapoptotic drugs than proliferative cells. Therefore, the authors combined cimetidine, an antiinflammatory agent already proven to act against migrating epithelial cancer cells, with temozolomide to determine whether the combination induces antitumor activities in experimental orthotopic human gliomas compared with the effects of temozolomide alone. METHODS: Cimetidine added to temozolomide compared with temozolomide alone induced survival benefits in nude mice with U373 human glioblastoma multiforme (GBM) cells orthotopically xenografted in the brain. Computer-assisted phase-contrast microscopy analyses of 9L rat and U373 human GBM cells showed that cimetidine significantly decreased the migration levels of these tumor cells in vitro at concentrations at which tumor growth levels were not modified (as revealed on monotetrazolium colorimetric assay). Computer-assisted microscope analyses of neoglycoconjugate-based glycohistochemical staining profiles of 9L gliosarcomas grown in vivo revealed that cimetidine significantly decreased expression levels of endogenous receptors for fucose and, to a lesser extent, for N-acetyl-lactosamine moieties. Endogenous receptors of this specificity are known to play important roles in adhesion and migration processes of brain tumor cells. CONCLUSIONS: Cimetidine, acting as an antiadhesive and therefore an antimigratory agent for glioma cells, could be added in complement to the cytotoxic temozolomide compound to combat both migrating and proliferating cells in GBM.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
    corecore