4,591 research outputs found

    Epidemiologic parameters and evaluation of control measure for 2009 novel influenza a (H1N1) in Xiamen, Fujian Province, China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Containment of influenza A H1N1 virus spread was implemented successfully in Xiamen, with large-scale inoculation to reduce morbidity. To identify beneficial elements and to guide decision-making in epidemic containment, we analyzed the epidemiologic parameters and evaluated the control measures.</p> <p>Method</p> <p>We determined various parameters from laboratory-confirmed cases, including incubation period, duration of illness and reproductive number (R<sub>0</sub>), and evaluated the control measures.</p> <p>Results</p> <p>There were1414 cases with dates of onset between June 14, 2009 and March 22, 2010. The incidence was 56.79/100,000, and mortality was 0.12/100,000. The incidence during the community epidemic phase was 6.23 times higher than in the containment phase. A total of 296,888 subjects were inoculated with domestic influenza H1N1 virus cleavage vaccine. An epidemic curve showed that vaccination in students cut the peak incidence of illness significantly. Men (relative risk (RR) = 1.30, 95% confidence interval (CI): 1.17-1.45) and persons aged 0-14 years were at greater risk of infection. The incidence increased with younger age (<it>χ</it><sup>2 </sup>= 950.675, <it>p </it>= ∞). Morbidity was lower in urban than in rural areas (RR = 0.56, 95%CI: 0.50-0.62). The median incubation time was 2 days, median duration of symptoms was 7 days, and the within-school reproductive number was 1.35.</p> <p>Conclusion</p> <p>Our analysis indicated that the characteristics of this novel influenza virus were similar to those of seasonal influenza. The principle of "interception of imported cases" applied at Xiamen ports, and vaccination of students effectively limited the spread of the influenza pandemic and reduced the epidemic peak.</p

    Clinical efficacy and safety of buyang huanwu decoction for acute ischemic stroke: a systematic review and meta-analysis of 19 randomized controlled trials

    Get PDF
    Buyang Huanwu Decoction (BHD) is a well-known traditional Chinese herbal prescription for treating stroke-induced disability. The objective of this study was to evaluate the efficacy and safety of BHD for acute ischemic stroke. A systematic literature search was performed in 6 databases until February 2012. Randomized controlled clinical trials (RCTs) that evaluate efficacy and safety of BHD for acute ischemic stroke were included. Nineteen RCTs with 1580 individuals were identified. The studies were generally of low methodological quality. Only one of the trial included death or dependency as a primary outcome measure. Only 4 trials reported adverse events. Meta-analysis showed the clinical effective rate of neurological deficit improvement favoring BHD when compared with western conventional medicines (WCM), P < 0.001. There is significant difference in the neurologic deficit score between the BHD treatment group and the WCM control group, P < 0.001. In Conclusion, BHD appears to improve neurological deficit and seems generally safe in patients with acute ischemic stroke. However, the current evidence is insufficient to support a routine use of BHD for acute ischemic stroke due to the poor methodological quality and lack of adequate safety data of the included studies. Further rigorously designed trials are required.published_or_final_versio

    Effects of hydrogen bond and solvent polarity on the C=O strectching of bis(2-thienyl)ketone in solution

    Get PDF
    The optimized structural parameters, the absorption and the resonance Raman spectra have been investigated for the bis(2-thienyl)ketone in gas phase, in cyclohexane, methanol, and acetonitrile solvents by means of time dependent density functional theory calculations, the solvent electronic polarization effect on the solvation shift is examined and in well accordance with the calculation. The effect of increasing the polarity of the solvent is well represented by the polarizable continuum model, both for the absorption spectra and resonance Raman intensities. The Raman spectra of the C=O stretching mode, which is sensitive to the intermolecular interaction for bis(2-thienyl)ketone dissolved in solvents, were systematically studied. It was found that the hydrogen bond effect plays an important role in reducing the carbonyl stretching wavenumbers. The results of Raman shifts were interpreted through the dilution effect, solvation effects, and hydrogen bond-forming effects. Furthermore, the excitation profiles of several important Raman bands of bis(2-thienyl)ketone molecule in different solvents have been critically analyzed. The solvent effects on structural and symmetry properties of the molecule in S2 electronic state as well as the short-time photo relaxation dynamics have been discussed.published_or_final_versio

    High-energy scale revival and giant kink in the dispersion of a cuprate superconductor

    Full text link
    In the present photoemission study of a cuprate superconductor Bi1.74Pb0.38Sr1.88CuO6+delta, we discovered a large scale dispersion of the lowest band, which unexpectedly follows the band structure calculation very well. The incoherent nature of the spectra suggests that the hopping-dominated dispersion occurs possibly with the assistance of local spin correlations. A giant kink in the dispersion is observed, and the complete self-energy containing all interaction information is extracted for a doped cuprate in the low energy region. These results recovered significant missing pieces in our current understanding of the electronic structure of cuprates.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Lett. on May 21, 200

    Scalp acupuncture for acute ischemic stroke: a meta-analysis of randomized controlled trials

    Get PDF
    Scalp acupuncture (SA) is a commonly used therapeutic approach for stroke throughout China and elsewhere in the world. The objective of this study was to assess clinical efficacy and safety of SA for acute ischemic stroke. A systematical literature search of 6 databases was conducted to identify randomized controlled trials (RCTs) of SA for acute ischemic stroke compared with western conventional medicines (WCMs). All statistical analyses were performed by the Rev Man Version 5.0. Eight studies with 538 participants were included in the studies. The studies were deemed to have an unclear risk of bias based on the Cochrane Back Review Group. Compared with the WCM, 6 RCTs showed significant effects of SA for improving neurological deficit scores (P < 0.01); 4 RCTs showed significant effects of SA for favoring the clinical effective rate (P < 0.01) However, the adverse events have not been documented. In conclusion, SA appears to be able to improve neurological deficit score and the clinical effective rate when compared with WCM, though the beneficial effect from SA is possibly overvalued because of generally low methodology of the included trials. No evidence is available for adverse effects. Rigorous well-designed clinical trials are needed.published_or_final_versio

    A momentum-dependent perspective on quasiparticle interference in Bi_{2}Sr_{2}CaCu_{2}O_{8+\delta}

    Full text link
    Angle Resolved Photoemission Spectroscopy (ARPES) probes the momentum-space electronic structure of materials, and provides invaluable information about the high-temperature superconducting cuprates. Likewise, the cuprate real-space, inhomogeneous electronic structure is elucidated by Scanning Tunneling Spectroscopy (STS). Recently, STS has exploited quasiparticle interference (QPI) - wave-like electrons scattering off impurities to produce periodic interference patterns - to infer properties of the QP in momentum-space. Surprisingly, some interference peaks in Bi_{2}Sr_{2}CaCu_{2}O_{8+\delta} (Bi-2212) are absent beyond the antiferromagnetic (AF) zone boundary, implying the dominance of particular scattering process. Here, we show that ARPES sees no evidence of quasiparticle (QP) extinction: QP-like peaks are measured everywhere on the Fermi surface, evolving smoothly across the AF zone boundary. This apparent contradiction stems from different natures of single-particle (ARPES) and two-particle (STS) processes underlying these probes. Using a simple model, we demonstrate extinction of QPI without implying the loss of QP beyond the AF zone boundary

    An Improved ångström-type model for estimating solar radiation over the tibetan plateau

    Full text link
    © 2017 by the authors. For estimating the annual mean of daily solar irradiation in plateau mountainous regions, observed data from 15 radiation stations were used to validate different empirical estimation methods over the Tibetan Plateau. Calibration indicates that sunshine-based site-dependent models perform better than temperature-based ones. Then, the highly rated sunshine-based Ångström model and temperature-based Bristow model were selected for regional application. The geographical models perform much better than the average models, but still not ideally. To achieve better performance, the Ångström-type model was improved using altitude and water vapor pressure as the leading factors. The improved model can accurately predict the coefficients at all the stations, and performs the best among all models with an average Nash-Sutcliffe Efficiency value of 0.856. Spatial distribution of the annual mean of daily solar irradiation was then estimated with the improved model. It is indicated that there is an increasing trend of radiation from east to west, with a great center of the annual mean of daily solar irradiation on southwest Tibetan Plateau ranging from 20 to 24 MJm2. The improved model should be further validated against observations before its applications in other plateau mountainous regions

    The elastic constants of MgSiO3 perovskite at pressures and temperatures of the Earth's mantle

    Full text link
    The temperature anomalies in the Earth's mantle associated with thermal convection1 can be inferred from seismic tomography, provided that the elastic properties of mantle minerals are known as a function of temperature at mantle pressures. At present, however, such information is difficult to obtain directly through laboratory experiments. We have therefore taken advantage of recent advances in computer technology, and have performed finite-temperature ab initio molecular dynamics simulations of the elastic properties of MgSiO3 perovskite, the major mineral of the lower mantle, at relevant thermodynamic conditions. When combined with the results from tomographic images of the mantle, our results indicate that the lower mantle is either significantly anelastic or compositionally heterogeneous on large scales. We found the temperature contrast between the coldest and hottest regions of the mantle, at a given depth, to be about 800K at 1000 km, 1500K at 2000 km, and possibly over 2000K at the core-mantle boundary.Comment: Published in: Nature 411, 934-937 (2001
    corecore