18 research outputs found
Transfer of complex skill learning from virtual to real rowing
Simulators are commonly used to train complex tasks. In particular, simulators are applied to train dangerous tasks, to save costs, and to investigate the impact of different factors on task performance. However, in most cases, the transfer of simulator training to the real task has not been investigated. Without a proof for successful skill transfer, simulators might not be helpful at all or even counter-productive for learning the real task. In this paper, the skill transfer of complex technical aspects trained on a scull rowing simulator to sculling on water was investigated. We assume if a simulator provides high fidelity rendering of the interactions with the environment even without augmented feedback, training on such a realistic simulator would allow similar skill gains as training in the real environment. These learned skills were expected to transfer to the real environment. Two groups of four recreational rowers participated. One group trained on water, the other group trained on a simulator. Within two weeks, both groups performed four training sessions with the same licensed rowing trainer. The development in performance was assessed by quantitative biomechanical performance measures and by a qualitative video evaluation of an independent, blinded trainer. In general, both groups could improve their performance on water. The used biomechanical measures seem to allow only a limited insight into the rowers' development, while the independent trainer could also rate the rowers' overall impression. The simulator quality and naturalism was confirmed by the participants in a questionnaire. In conclusion, realistic simulator training fostered skill gains to a similar extent as training in the real environment and enabled skill transfer to the real environment. In combination with augmented feedback, simulator training can be further exploited to foster motor learning even to a higher extent, which is subject to future work
Effectiveness of two cognitive training programs on the performance of older drivers with a cognitive self-assessment bias
Purpose: Depending on the calibration of their cognitive abilities, some older drivers (ODs) might stop driving prematurely (under-estimators, UEs) and others could expose themselves to risky situations (over-estimators, OEs). The aim of the study was to compare the effectiveness of two cognitive training (CT) programs intended for ODs presenting a cognitive calibration bias. We hypothesized that CT with feedback on performance can help ODs to correctly calibrate their abilities and consequently adapt their driving behavior.Method: One hundred and six ODs (≥70 years) were assigned to two CT groups (with or without a driving simulator experience, DS). These interventions lasted about 36 h and were distributed over a 3-month period. ODs completed objective and subjective cognitive evaluations and an on-road driving evaluation before and after training.Results: The first results on 67 participants (40 from the CT group, and 27 from the CT + DS group) showed an improvement of their visual processing speed, their divided attention and their selective attention after training. Participants from both groups also had an improved TRIP tactical sub-score (Test Ride for Investigating Practical fitness to drive), indicating a better driving behavioral adaptation. Finally, although both training programs seemed to be equally effective in correcting cognitive calibration bias, the results indicated that 21 UEs and 10 OEs were well calibrated and thus correctly self-assessed their cognitive abilities after training.Conclusion: Both CT programs (with or without DS experience) seem to improve the visual attention of ODs. UEs appeared to be more susceptible than OEs to this training and were better calibrated after it