5 research outputs found

    Phytotoxicity of four photosystem II herbicides to tropical seagrasses

    Get PDF
    Coastal waters of the Great Barrier Reef (GBR) are contaminated with agricultural pesticides, including the photosystem II (PSII) herbicides which are the most frequently detected at the highest concentrations. Designed to control weeds, these herbicides are equally potent towards non-target marine species, and the close proximity of seagrass meadows to flood plumes has raised concerns that seagrasses may be the species most threatened by herbicides from runoff. While previous work has identified effects of PSII herbicides on the photophysiology, growth and mortality in seagrass, there is little comparative quantitative toxicity data for seagrass. Here we applied standard ecotoxicology protocols to quantify the concentrations of four priority PSII herbicides that inhibit photochemistry by 10, 20 and 50% (IC, IC and IC) over 72 h in two common seagrass species from the GBR lagoon. The photosystems of seagrasses Zostera muelleri and Halodule uninervis were shown to be generally more sensitive to the PSII herbicides Diuron, Atrazine, Hexazinone and Tebuthiuron than corals and tropical microalgae. The herbicides caused rapid inhibition of effective quantum yield ({increment}F/F′), indicating reduced photosynthesis and maximum effective yields (F/F) corresponding to chronic damage to PSII. The PSII herbicide concentrations which affected photosynthesis have been exceeded in the GBR lagoon and all of the herbicides inhibited photosynthesis at concentrations lower than current marine park guidelines. There is a strong likelihood that the impacts of light limitation from flood plumes and reduced photosynthesis from PSII herbicides exported in the same waters would combine to affect seagrass productivity. Given that PSII herbicides have been demonstrated to affect seagrass at environmental concentrations, we suggest that revision of environmental guidelines and further efforts to reduce PSII herbicide concentrations in floodwaters may both help protect seagrass meadows of the GBR from further decline

    Water quality degradation of coastal waterways in the Wet Tropics, Australia

    No full text
    The Wet Tropics region of north Queensland has outstanding environmental values, contains the highest biological diversity in Australia, and borders the Great Barrier Reef. Comparable to other tropical areas worldwide, increasing urban and agricultural development in the Wet Tropics has caused concerns with respect to ecosystem degradation due to poor water quality in freshwater reaches and marine environments. Key issues currently identified in the Wet Tropics include erosion and subsequent stream turbidity and sedimentation, nutrients from erosion and fertiliser use and pesticide residue contamination. Issues such as reduced dissolved oxygen, acid sulfate soil runoff, and biological factors such as weed infestation, reduced and degraded riparian vegetation condition, and flow modification have also been identified. These issues mainly arise from agricultural activities with lesser effects from urban development. Management of pollution to improve in-stream water quality requires a long-term monitoring program to characterize water quality conditions over different flows and seasons. This type of monitoring program is underway; however, the focus is on the Great Barrier Reef and does not fully consider freshwater ecosystem health. Another major issue is the lack of a fully developed conceptual framework that links changed land use to water quality and subsequently to aquatic ecosystem health. In this paper, we establish the current level of water quality knowledge in the Wet Tropics while outlining a conceptual framework connecting changing land management practices and their effects to water quality and to ecosystem health

    Organomonophosphines in PtP2XY derivatives: structural aspects

    No full text
    corecore