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Abstract

Coastal waters of the Great Barrier Reef (GBR) are contaminated with agricultural pesticides, including the
photosystem II (PSII) herbicides which are the most frequently detected at the highest concentrations. Designed to
control weeds, these herbicides are equally potent towards non-target marine species, and the close proximity of
seagrass meadows to flood plumes has raised concerns that seagrasses may be the species most threatened by
herbicides from runoff. While previous work has identified effects of PSII herbicides on the photophysiology, growth
and mortality in seagrass, there is little comparative quantitative toxicity data for seagrass. Here we applied standard
ecotoxicology protocols to quantify the concentrations of four priority PSII herbicides that inhibit photochemistry by
10, 20 and 50% (IC10, IC20 and IC50) over 72 h in two common seagrass species from the GBR lagoon. The
photosystems of seagrasses Zostera muelleri and Halodule uninervis were shown to be generally more sensitive to
the PSII herbicides Diuron, Atrazine, Hexazinone and Tebuthiuron than corals and tropical microalgae. The
herbicides caused rapid inhibition of effective quantum yield (∆F/Fm′), indicating reduced photosynthesis and
maximum effective yields (Fv/Fm) corresponding to chronic damage to PSII. The PSII herbicide concentrations which
affected photosynthesis have been exceeded in the GBR lagoon and all of the herbicides inhibited photosynthesis at
concentrations lower than current marine park guidelines. There is a strong likelihood that the impacts of light
limitation from flood plumes and reduced photosynthesis from PSII herbicides exported in the same waters would
combine to affect seagrass productivity. Given that PSII herbicides have been demonstrated to affect seagrass at
environmental concentrations, we suggest that revision of environmental guidelines and further efforts to reduce PSII
herbicide concentrations in floodwaters may both help protect seagrass meadows of the GBR from further decline.
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Introduction

Pesticide contamination in the tropics
The lagoon of the World Heritage listed Great Barrier Reef

(GBR) is contaminated with a range of agricultural pesticides
including herbicides and insecticides [1]. Concentrations of
these pesticides are highest nearshore and during the summer
wet season (November to March) when high rainfall facilitates
transport from farms, through the catchments and into the
lagoon [2–4]. The most frequently detected pesticides are the
photosystem II (PSII) herbicides such as Diuron, Atrazine,
Hexazinone and Tebuthiuron [2,3,5,6], and recent modelling
indicates that over 15,000 kg of PSII herbicides alone enter the
GBR lagoon along its 2,600 km shoreline on an annual basis
[7–9]. Although the GBR and its catchments are the most

heavily monitored of all tropical ecosystems for pesticides, the
issue is not restricted to Australia. Similar herbicides are
considered a potential threat to nearshore habitats of the
western Indian Ocean [10], the northern Pacific [11], the
Atlantic coast, including Chesapeake Bay [12] and the
Caribbean [13].

Effects of PSII herbicides on non-target marine species
PSII herbicides act by binding to the D1 protein in PSII which

blocks photosynthetic electron flow and this in turn limits the
fixation of CO2 in plants [14]. Under moderate light conditions
PSII herbicides reduce primary productivity, and under higher
light, blockage of the electron transport system results in the
build-up of reactive oxygen species that damage PSII [15,16].
These herbicides have been designed to prevent germination,
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reduce growth and kill weeds, and given that the D1 protein is
one of the most highly conserved proteins across taxa, it is not
surprising that PSII herbicides also affect non-target marine
species at low concentrations [17]. Since photosynthesis fixes
carbon for growth, the effects of PSII herbicides on
photosynthesis result in reduced primary production which can
have flow-on effects at higher trophic levels in marine
ecosystems [18].

The sensitivities of several tropical marine taxa to PSII
herbicides have been tested in controlled laboratory conditions.
The non-invasive technique of pulse amplitude modulation
(PAM) fluorometry (see Methods section) is particularly suited
to quantify the sub-lethal effects of PSII herbicides on plants as
the parameters measured are directly linked to reduced
photochemical efficiency and/or capacity by binding of the
herbicide in PSII [16,18]. PAM fluorometry has been used to
measure the direct effects of PSII herbicides on photosynthetic
efficiency and damage to photosystem II in corals [19–22],
microalgae [23–25], Foraminifera [26] and crustose coralline
algae [19], providing regulators and managers with growing
toxicity datasets for herbicide and species comparisons.

Seagrass and herbicides
Seagrass meadows were identified as being at risk from

Diuron and/or Atrazine exposure more than three decades ago
off the US [27,28] and European [29] coasts and more recently
within the GBR lagoon [1]. Diuron was detected within the leaf,
root and rhizome tissue of seagrass at 1.1 µg kg-1 from
Cardwell (GBR) and 1.7 µg kg-1 in seagrasses from Moreton
Bay, just south of the GBR [1]. A wider range of PSII herbicides
including Simazine, Hexazinone, Ametryn and Tebuthiuron
were also detected in sediments of seagrass meadows and
surface waters in the southern GBR lagoon [30]. A series of
publications have reported that seagrasses are very sensitive
to PSII herbicides, particularly Diuron and Atrazine, with
inhibition of photosynthetic efficiency (ΔF/F’m) measured by
PAM fluorometry the most commonly used endpoint (Table 1).
Ralph [31] demonstrated inhibition of ΔF/F’m in Halophila ovalis
at Diuron and Atrazine concentrations as low as 10 µg l-1 (but
lower concentrations were not tested). Haynes et al. [32]
observed significant effects of Diuron on three seagrass
species in aquaria over 5 days at similar concentrations and
this was followed by recovery of ΔF/F’m in most treatments
(Table 1). Reductions in seagrass growth has also been
measured over 4 weeks under low light conditions at 10 µg l-1
Diuron and reductions in total chlorophyll and mortality at 100
µg l-1 Diuron [33]. Other endpoints such as oxygen production
have been measured on largely temperate species (reviewed
in 34). However, impairment of photosynthetic processes
(ΔF/F’m and Fv/Fm) have been the most rapid and sensitive
endpoints tested with the lowest significant effect concentration
reported as 1 µg l-1 [10,35].

Ecological threats of herbicides to seagrass
Coastal seagrass meadows are among the most ecologically

important (and threatened) habitats in the tropics, providing
critical ecosystem services including food for fish, turtle,
manatee and dugong, habitat for fish and invertebrates and

they are highly valued for their role in nutrient cycling [36,37].
Coastal communities across the globe are in turn dependent on
the ecosystem services provided by seagrass meadows [38],
and seagrass meadows enhance the ecosystem services of
adjacent habitats such as coral reefs [39]. Recent estimates
indicate global seagrass losses of 110 km2 yr−1 are comparable
to those of tropical rainforests and coral reefs [40] and are
primarily due to human impacts in the coastal zone including
declining water quality, physical disturbance and over-fishing
[41]. Within the GBR, recent wide-spread loss of seagrass
(from 2008-2011) and record dugong and turtle mortalities

Table 1. Effect concentrations of agricultural PSII
herbicides to seagrass in previous laboratory exposure
experiments.

Herbicide Seagrass species Endpoint Duration LOEC IC50 Reference

Diuron Halophila ovalis ΔF/F’m
5 & 72
h

10a - [31]

 Halophila ovalis ΔF/F’m 5 d 10b - [32]
 Zostera muelleri ΔF/F’m 5 d 10b - [32]
 Zostera muelleri ΔF/F’m 96 h 10a,c  [69]
 Zostera marina Fv/Fm 10 d 1e 3.2e [35]
 Zostera marina Growth 10 d 5e - [35]

 
Cymodocea

serrulata
ΔF/F’m 5 d 10b - [32]

 
Thalassodendron

ciliatum
Fv/Fm 72 h 1c 7.9c,d,e [10]

Atrazine Halophila ovalis ΔF/F’m
5 & 72
h

10a - [31]

 Zostera muelleri ΔF/F’m 4 h 10a,c - [69]

 Zostera marina
ΔF/F’m &

Fv/Fm
24 h 4a,e - [33]

 Zostera marina Growth 21 d 100  [59]
 Zostera marina Mortality 21 d 100  [59]
 Zostera marina Growth 10 d 1900e - [12]

 
Zostera marina

(seedlings)

ΔF/F’m &

Fv/Fm
24 h 2a,e - [33]

 
Zostera marina

(seedlings)
Growth 4 wks 10e - [33]

 
Zostera marina

(seedlings)
Chlorophyll 4 wks 100e - [33]

 
Zostera marina

(seedlings)
Mortality 4 wks 100e - [33]

Simazine Halophila ovalis ΔF/F’m
5 & 72
h

100 - [31]

LOEC is the lowest observed effect concentration (µg l-1); IC50 is the concentration
(µg l-1) that inhibits 50% photosynthetic capacity. Inhibition of the effective (ΔF/F’m)
and maximum (Fv/Fm) quantum yields from PAM fluorometry represent impairment
of photosynthetic activity (see Methods section).
a. lower concentrations not tested
b. likely effects at lower concentrations but large uncertainties, temperature range
20-35°C
c. rapid recovery in uncontaminated water
d. estimated from 3 Diuron concentrations
e. plants exposed without sediments
doi: 10.1371/journal.pone.0075798.t001
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were largely attributed to repeated years of above average
rainfall and run-off (culminating in extreme weather associated
with a category 5 tropical cyclone in February 2011) with
associated suspended sediments reducing light available for
photosynthetic C-fixation [42,43]. In addition, PSII herbicides
have also been detected in runoff entering the GBR lagoon at
concentrations above environmental guidelines [2,4] and as
such may contribute to losses of coastal seagrasses.

While previous work has identified effects of PSII herbicides
on the photophysiology, biochemistry and growth of seagrass
(Table 1), there is little reliable quantitative toxicity data for
seagrass. Here we applied standard ecotoxicology protocols to
quantify the concentrations of four priority PSII herbicides that
inhibit photochemistry by 10, 20 and 50% (IC10, IC20 and IC50)
over 72 h in two common seagrass species from the GBR
lagoon. The time to reach maximum inhibition of
photosynthesis by herbicides was also tested using an
additional two seagrass species. These data will enable
improved assessment of the risks posed by PSII herbicides to
tropical seagrass for both regulatory purposes and for
comparison with other taxa.

Materials and Methods

Herbicides
The four PSII herbicides used in the present study represent

three structural groups: (1) the urea herbicides Diuron and
Tebuthiuron, (2) the s-triazine Atrazine and (3) the trizinone
Hexazinone. These herbicides are among the most widely and
frequently detected in the GBR lagoon [2–4,44,45].

Plant collection
Four seagrass species were used in preliminary studies to

determine the time taken for PSII herbicides to affect
photosynthesis, while more detailed ecotoxicology studies were
undertaken with two species as described below. Halodule
uninervis, Cymodocea rotundata Ascherson (Cymodoceaceae)
and Thalassia hemprichii Ascherson (Hydrocharitaceae) are
tropical seagrass species widely distributed throughout the
Indo-West Pacific while Zostera muelleri Irmisch ex Ascherson
(Zosteraceae), (syn Zostera capricorni) is a tropical to
temperate species found in Australia and New Zealand [46]. All
four species occur in northeastern Australia and the Great
Barrier Reef (GBR). H. uninervis, C. rotundata and T.
hemprichii were collected from intertidal seagrass meadows
(<1 m) from Cockle Bay, Magnetic Island (19°10.88’ S,
146°50.63’ E) while Z. muelleri was collected from Pelican,
Banks, Gladstone, Australia (23°46.005’ S, 151° 18.052E).
Seagrasses were collected under permit MTB41, a permit
issued for limited impact research in the GBR Marine, Park
which was assessed through the Department of Employment,
Economic Development and Innovation self-assessable
Fisheries Queensland Code MP05 for the removal of marine
plants. Plants were transported to the Australian Institute of
Marine Science (AIMS) Townsville, Australia in seawater. Pots
of all seagrass species in sediment were maintained in outdoor
aquaria (1000 l) with flow-through filtered seawater (5 µm)

under 70% shading (maximum 350 µmol photons m-2 s-1),
ambient temperature (23-25°C) and salinity at 35-36 PSU.

Bioassay
Prior to experimentation, plants with 4-9 shoots each were

transferred to 500 ml plastic experimental pots of 13.5 x 9.8 cm
with a sediment depth of 4.5 cm. These units were placed into
6 l glass aquaria filled with 1 µm filtered seawater, gently
aerated and under 273 ± 17 µmol photons m-2 s-1 (12h
light:dark photoperiods, Aqua Illumination LED). This light
intensity was chosen as the median daily irradiance at the
Magnetic Island collection site [47]. The glass aquaria were
placed into water baths and maintained at 25.8 ± 0.3°C
(range), equivalent to the annual average temperature in the
GBR [48]. Plants were allowed to acclimate for at least one
week prior to experimentation. Stock herbicide solutions (5 mg
l-1 for Diuron, Atrazine and Hexazinone and 50 mg l-1 for
Tebuthiuron) were prepared in milli-Q (< 0.03% v/v ethanol
carrier) and all assays performed in 1 µm filtered seawater. All
herbicide standards were >95% pure and were purchased from
Sigma-Aldrich.

Initially a series of pilot studies were performed to measure
the time it takes for the four PSII herbicides to illicit 90% steady
state (maximum) inhibition of effective quantum yield (ΔF/F’m,
see below) in Z. muelleri at single herbicide concentrations.
These findings were used to ensure that the exposure duration
of later dose-response curves (described below) was sufficient.
The nominal herbicide concentrations used were 10 µg l-1
Diuron, 50 µg l-1 Atrazine, 10 µg l-1 Hexazinone and 400 µg l-1
Tebuthiuron. We also exposed all four species of seagrass to
10 µg l-1 Diuron to examine the consistency of response times
between species. Inhibition of ΔF/F’m by the herbicides
compared with carrier controls were conducted at multiple
times up to 24 h.

The studies above revealed a rapid response of the
seagrass tested to the herbicides so the final series of static
seagrass exposure assays with H. uninervis and Z. muelleri
were performed over 72 h, with 100% water replaced every 24
h. These two species were each exposed to seven elevated
concentrations of each herbicide (Table 2) along with seawater
and solvent carrier controls. All treatments were conducted in
duplicate tanks. After 72 h exposures, H. uninervis and Z.
muelleri were removed from the experimental containers,
washed free of sediment and placed into -20°C for later
analysis of growth (see below).

Chlorophyll fluorescence
Chlorophyll a fluorescence measurements (effective

quantum yield, ΔF/F’m and maximum quantum yield, Fv/Fm)
were taken just prior to the start of exposure and after 24 and
72 h using a pulse amplitude modulated chlorophyll fluorometer
(mini-PAM, Walz, Germany). Measurements were obtained by
placing a 2 mm fibre-optic probe perpendicular to the surface of
the seagrass leaf. Measurements were made on 6-8 leaves per
pot with two measurements taken per leaf between 1-2 cm
from the top of the sheath. Measurements were made only on
green, non-senescent leaves i.e. not showing signs of pigment
loss. Initial fluorescence (F in illuminated samples and F0 in
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dark-adapted samples) was determined by applying a weak
pulse-modulated red measuring light (650 nm, 0.15 µmol
photons m-2s-1). The light adapted maximum fluorescence (F’m)
was quantified by applying a short pulse (800 ms) of saturating
actinic light (>3000 µmol photons m-2s-1). The effective
quantum yield in an illuminated plant (∆F/F’m, Eq. 1) provides
an estimate of the efficiency of photochemical energy
conversion within photosystem II (PSII) under a specific light
intensity [49]. The reversible binding of PSII herbicides to the
D1 protein in PSII results in an immediate and temporary
reduction in ∆F/F’m [22].

ΔF /Fm'= Fm−F /Fm' (1)

The maximum quantum yield (Fv/Fm) is equivalent to the
proportion of light used for photosynthesis by chlorophyll when
all reaction centres are open [49]. A reduction in Fv/Fm, which is
measured after a period of dark-adaptation indicates
photooxidative damage to PSII (chronic photoinhibition). In the
present study, seagrasses were dark adapted for 30 min and
F0 and Fm measured (as above) were used to derive maximum
quantum yields as per Eq. 2:

Fv /Fm= Fm−F0 /Fm (2)

The inhibition of ∆F/Fm′ and Fv/Fm due to the binding of
herbicides or damage to the D1 protein in PSII [15] was
calculated according to Eq. 3

Inhibition % = 1− YieldTreatment
YieldControl ×100 (3)

Growth
Leaf extension rate was used as a proxy for seagrass

productivity [50]. A 25-gauge syringe needle was used to
puncture the leaves at the top of the leaf sheath of H. uninervis
and Z. muelleri. The length of growth (mm) which is the
distance from the initial mark to scars on new leaves was

Table 2. Measured herbicide concentrations.

Herbicide Diuron  Atrazine  Hexazinone  Tebuthiuron  
Time (h) 0 72 0 72 0 72 0 72
Nominal         
0 BRL BRL BRL BRL BRL BRL BRL BRL
0.12 0.24 0.15 - - - - - -
0.37 0.41 0.34 0.37 0.38 0.4 0.39 - -
1.2 1.09 1.15 1.4 1.32 1.24 1.37 1.49 1.63
3.7 2.91 2.95 3.35 3.50 4.12 4.04 4.34 4.57
12 9.70 9.87 11.5 13.0 15.2 12.9 14.3 8.82
37 28.3 28.6 37.0 35.7 40.2 40.3 43.1 42.0
120 102 87.8 147 122 132 141 140 142
370 - - 374 365 346 397 394 442
1100 - - - - - - 1008 1023

Mean measured herbicide concentrations (µg l-1) at the beginning and end of
toxicity assays against the nominal concentrations. Seawater and solvent controls
were below reporting limit (BRL) of < 0.1 µg l-1. Not used (-).
doi: 10.1371/journal.pone.0075798.t002

measured after 3 d under a stereo microscope (16x
magnification) using vernier calipers.

Herbicide analysis
Water samples (2 ml) were taken 1 h after dosing and at 72

h and pipetted into 4 mL amber glass vials then spiked with 10
µL of a surrogate standard, d5-Atrazine (Novachem, Victoria,
Australia). The final concentration of the surrogate standard
was 5 µgl-1 then stored frozen. Thawed herbicide samples were
0.45 µm filtered then analysed by HPLC-MS/MS using an AB/
Sciex API5500Q mass spectrometer (AB/Sciex, Concord,
Ontario, Canada) equipped with an electrospray (TurboV)
interface and coupled to a Shimadzu Prominence HPLC
system (Shimadzu Corp., Kyoto, Japan). Column conditions
were as follows: Phenomenex Synergi Fusion RP column
(Phenomenex, Torrance, CA) 4 µm, 50 x 2.0 mm, 45°C, with a
flow rate of 0.4 ml min-1. A linear gradient starting at 8% B for
0.5 min was ramped to 100% B in 8 min then held at 100% for
2 min followed by equilibration at 8% B for 2.5 min (A = 1%
methanol in HPLC grade water, B = 95% methanol in HPLC
grade water, both containing 0.1% acetic acid). The mass
spectrometer was operated in the positive ion, multiple
reaction-monitoring mode using nitrogen as the collision gas.
The limit of detection for this method was typically less than 0.1
µg l-1 and the response linear across the concentration range
used. Sample sequences were run with a standard calibration
at the beginning and end of sequence with additional mid-
range standards run every 10 samples. Measured
concentrations can be found in Table 2.

Data Analysis
Photosynthetic yield data were arcsine square root

transformed and growth data were square root transformed to
meet the assumptions of one-way analysis of variance
(ANOVA). Data were then pooled from replicate tanks following
nested ANOVA validation with tank as the nested factor.
Inhibition of photosynthetic yields was taken relative to carrier
control (for all 4 herbicides) as it was found that there was no
significant difference between seawater controls and carrier
controls.

The time taken for the herbicides to cause a 90% steady
state inhibition of ∆F/Fm′and Fv/Fm was calculated by plotting
inhibition data against time using a 3-parameter exponential
curve (SigmaPlot 11, Systat Software, CA). 90% of maximum
inhibition was used as a precise estimate of response time for
comparisons between species and herbicides since the
maximum (100%) response would need to be estimated from a
trailing asymptote. Dose-response curves for the inhibition of
∆F/Fm′ and Fv/Fm data were produced by fitting inhibition data
with measured concentrations using a 4 parameter logistic
model (SigmaPlot 11). The herbicide inhibition concentrations
(ICxx) that inhibited ∆F/Fm′ and Fv/Fm by 10, 20 and 50% (IC10,
IC20 and IC50, respectively) were determined from each curve.
Comparisons of ICx values are more valuable than “no
observed effect concentrations” (NOEC) or “lowest observed
effect concentrations” (LOEC) for estimating reliable biological
responses since modelling data to a function across the range
of responses minimises large uncertainties inherent in
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statistically comparing a limited number of discrete response
points against a control [51].

Results

Time taken to steady state inhibition
The herbicides Diuron, Atrazine and Tebuthiuron all caused

90% steady state inhibition of effective quantum yield (ΔF/F’m)
in Z. muelleri within 4 hours (Figure 1A, Table 3). Hexazinone
acted more slowly on PSII and did not reach 90% of steady
state inhibition until almost 13 h (Figure 1A, Table 3). The
response of Z. muelleri to Diuron exposure was more rapid (3.7
hr) than the other three seagrass species tested, with the
slowest T. hemprichii, taking more than twice as long (7.7 hr) to
reach 90% steady state inhibition of ΔF/F’m (Figure 1B, Table
3).

Inhibition of effective quantum yield at 72 h
Plots of the inhibition of ΔF/F’m against concentration for

each herbicide-seagrass combination yielded classic sigmoidal
dose-response relationships with r2 values greater than 0.98
(Figure 2A and 2B). Diuron was consistently the most potent
herbicide (lowest IC50) to both Z. muelleri and H. uninervis
followed by Hexazinone, Atrazine and Tebuthiuron (Table 4).
Inhibition of ΔF/F’m was virtually identical for both species
exposed to the urea herbicides Diuron and Tebuthiuron. Z.
muelleri on the other hand appeared consistently more
sensitive (lower ICx) than H. uninervis to the triazine herbicides
Atrazine and Hexazinone (Table 4). No observed effect
concentrations (NOEC) for ΔF/F’m can be found in Table S3.

Inhibition of maximum potential quantum yield at 72 h
The inhibition of Fv/Fm in both seagrass species formed

similar sigmoidal relationships with PSII herbicide
concentrations (r2 > 0.99) (Figure 2C and 2D). However,
photosynthetic yields in the dark (Fv/Fm) were not inhibited by

Figure 1.  Time taken to steady state inhibition.  Inhibition of effective quantum yield (ΔF/F’m) relative to maximum inhibition over
time by (A) Diuron (10 µg l-1), Atrazine (50 µg l-1), Hexazinone (10 µg l-1) and Tebuthiuron (400 µg l-1) to Z. muelleri and (B) Diuron
(10 µg l-1) to four seagrass species. Bars = ± SE, n = 4.
doi: 10.1371/journal.pone.0075798.g001

Table 3. Time taken to steady state inhibition.

Species Z. muelleri H. uninervis H. ovalis T. hemprichii

Herbicide     
Diuron 3.7 5.5 6.6 7.7
Atrazine 2.0 - - -
Hexazinone 12.7 - - -
Tebuthiuron 1.5 - - -

Time (hours) to 90% of maximum inhibition of effective quantum yield (ΔF/F’m). Z. muelleri was exposed to four herbicides independently and all four seagrass species were
individually exposed to Diuron. Not tested (-).
doi: 10.1371/journal.pone.0075798.t003
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Diuron, Atrazine and Tebuthiuron to the same extent (greater
IC50 values) as those taken in illuminated conditions (ΔF/F’m)
(Table 5). Interestingly, the slopes of the Fv/Fm inhibition curves
for Hexazinone were 1.45 (Z. muelleri) and 1.73 (H. uninervis),
which were greater than the slopes for the other herbicide-
seagrass combinations (0.95-1.21). Consequently, Hexazinone
was the most potent inhibitor of Fv/Fm with IC50 values of 4.61
µg l-1 (Z. muelleri) and 4.75 µg l-1 (H. uninervis), which were
similar to their respective light adapted yields (Table 4 and
Table 5). No observed effect concentrations (NOEC) for Fv/Fm

can be found in Table S3.

Assay duration
Since PAM fluorometry is a non-destructive technique, we

were able to measure the responses of both ∆F/Fm′and Fv/Fm to
the same herbicides following the first 24 h exposure. There
was little difference in inhibition with the ICx values at 24 h
(Tables S1 and S2) than those obtained at 72 h (Tables 4 and
5). For example, the mean ratios for IC50 (24 h/72 h) for all
herbicides and seagrass combinations were 0.96 ± (0.05) SE
for ΔF/Fm′ and 1.00 ± 0.04 (SE) for Fv/Fm.

Growth
Growth rates (leaf extension) in control treatments ranged

between 1.5-3.9 mm day-1 for Z. muelleri and 1.6 and 3.9 mm
day-1 for H. uninervis in the four 72 h exposure experiments. No

Figure 2.  Concentration-response curves for two seagrasses species and four herbicides.  Percent inhibition relative to
control for effective quantum yield (ΔF/F’m) and maximum potential yields (Fv/Fm) in Zostera muelleri and Halodule uninervis
exposed to PSII herbicides over 72 h.
doi: 10.1371/journal.pone.0075798.g002
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significant differences (results not shown) between the
herbicide treatments were observed, most likely due to the
short duration of the experiment.

Discussion

The photosystems of seagrasses Zostera muelleri and
Halodule uninervis were shown to be at least as sensitive to
the PSII herbicides Diuron, Atrazine, Hexazinone and
Tebuthiuron as corals and tropical microalgae. The herbicides
caused rapid inhibition of effective quantum yield (∆F/Fm′),
indicating reduced photosynthesis and maximum effective
yields (Fv/Fm) corresponding to chronic damage to PSII. The
herbicide concentrations which affected photosynthesis have
been exceeded in the GBR lagoon and all of the herbicides
inhibited photosynthesis at concentrations lower than the water
quality guidelines [52] for 90% species protection.

Time taken to steady state inhibition of effective
quantum yield

The time taken to 90% maximum effect on ∆F/Fm′in seagrass
by Diuron was between 3.7 and 7.7 hours for the four species.
Although this inhibition is comparable to the 2 to 4 hours
observed for coral symbionts [22], the response of microalgae
is faster still, often reaching maximum inhibition within 20 min
of exposure [24,53]. In agricultural weeds, PSII herbicides are
taken up by the roots and transported through the vascular
system to PSII in the leaves. The same mechanism may occur
in seagrass, although Schwarzschild et al. [12] demonstrated
low sensitivity of the seagrass Zostera marina exposed to
Atrazine through the root-rhizome complex, concluding that
these herbicides are more likely to be rapidly transported
directly across the semi-permeable cell walls of leaves.
Hexazinone was the slowest-acting PSII herbicide tested;
taking four-times longer to reach 90% maximum inhibition
compared with Diuron and was more than 6-fold slower than
Atrazine and Tebuthiuron. A similar result was observed for the
gradual effect of Hexazinone (2-3 hours rather than minutes for
Diuron) on diatoms and green algae [24,25]. The reason for

Table 4. Herbicide concentrations that inhibit effective quantum yield in seagrass after 72 h.

 Diuron  Atrazine  Hexazinone  Tebuthiuron  
 IC50 95% CV IC50 95% CV IC50 95% CV IC50 95% CV
Z. muelleri 2.47 1.96–3.23 13.4 10.5-15.8 4.40 3.50-5.58 29.1 21.7-39.0
H. uninervis 2.41 2.04-2.88 18.2 14.1-23.6 6.87 5.54-8.44 29.7 23.8-37.9
 IC20 95% CV IC20 95% CV IC20 95% CV IC20 95% CV
Z. muelleri 0.8899 0.54-1.23 3.10 2.01-4.13 1.36 0.89-1.88 9.0790 6.12-13.0
H. uninervis 0.8699 0.66-1.10 5.31 3.24-8.01 2.37 1.56-3.33 8.1690 5.87-11.4
 IC10 95% CV IC10 95% CV IC10 95% CV IC10 95% CV
Z. muelleri 0.4999 0.26-0.87 1.1795 0.29-1.89 0.6799 0.39-1.11 4.7990 2.59-7.75
H. uninervis 0.4799 0.31-0.68 2.1190 0.17-4.40 1.27 0.74-2.15 3.8790 2.49-6.01

Concentration of herbicides (µg l-1) that inhibit effective quantum yield (photosynthetic efficiency ΔF/F’m) by 10%, 20% and 50% (IC10, IC20 and IC50) in Z. muelleri and H.

uninervis and following 72 h exposures. Results for 24 h exposures can be found in Table S1. Inhibition concentrations (ICx) below guideline trigger values for protecting
90%, 95% and 99% of species are indicated by respective superscripts (Table S4 [52]).
doi: 10.1371/journal.pone.0075798.t004

Table 5. Herbicide concentrations that inhibit maximum yield in seagrass after 72 h.

 Diuron  Atrazine  Hexazinone  Tebuthiuron  
 IC50 95% CV IC50 95% CV IC50 95% CV IC50 95% CV
Z. muelleri 8.33 6.58-10.8 47.9 39.8-57.8 4.75 4.06-5.63 46.1 34.2-64.2
H. uninervis 5.89 4.69-7.52 33.3 26.1-44.5 4.61 3.57-6.01 44.8 32.7-62.0
 IC20 95% CV IC20 95% CV IC20 95% CV IC20 95% CV
Z. muelleri 2.0490 1.44-2.75 11.4 8.86-14.1 1.73 1.31-2.23 10.390 6.64-15.5
H. uninervis 1.5295 1.06-2.02 9.24 5.92-13.4 1.92 1.23-2.81 11.290 6.97-17.5
 IC10 95% CV IC10 95% CV IC10 95% CV IC10 95% CV
Z. muelleri 0.9595 0.57-1.48 5.14 3.55-7.30 0.9299 0.52-1.31 4.3990 2.37-7.99
H. uninervis 0.7099 0.42-1.09 3.98 1.77-7.40 1.0399 0.26-1.91 5.0390 2.19-9.47

Concentration of herbicides (µg l-1) that inhibit maximum potential quantum yield (indicating damage to PSII, Fv/Fm) by 10%, 20% and 50% (IC10, IC20 and IC50) in Z.

muelleri and H. uninervis and following 72 h exposures. Results for 24 h exposures can be found in Table S2. Inhibition concentrations (ICx) below guideline trigger values
for protecting 90%, 95% and 99% of species are indicated by respective superscripts (Table S4 [52]).
doi: 10.1371/journal.pone.0075798.t005
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protracted uptake of Hexazinone may be a lower membrane
permeability due to its high water solubility (log KOW = 1.2)
relative to the other herbicides (log KOW 1.8-2.6) [54]. The
concentrations of each herbicide that inhibited 50% of ∆F/Fm′ or
Fv/Fm (IC50s) were identical following 24 and 72 h exposures
(Tables 4, 5, S1 and S2), confirming the consistent binding of
herbicides to the D1 protein over this time period and indicating
that 24 h is a sufficient duration for this endpoint in future
ecotoxicological studies.

Inhibition of effective quantum yield
The inhibition of effective quantum yield (∆F/Fm′
) in the light is an ideal measure of PSII herbicide impacts on

seagrass since a reduction in ∆F/Fm′indicates blockage of
electron transport in PSII during active photosynthesis (due to
binding of the PSII herbicide to the D1 protein), which is
proportional to the reduction in photosynthetic energy [18,49].
The decline in ∆F/Fm′ following herbicide exposure therefore
provides a direct link to a diminished photosynthetic carbon
fixation (energy) and finally productivity and growth [18,55].
Reduction of photosynthetic products including oxygen and
ATP in seagrass in the presence of Atrazine [28,56–59] further
supports this endpoint as a valid indicator of stress in seagrass.
Quantifying the herbicide concentrations which inhibit ∆F/Fm′by
50% (IC50) allows comparisons of the potency of PSII
herbicides and the sensitivity of different species and taxa to
the PSII herbicides; however, IC50s for ∆F/Fm′ had not been
described for the effects of PSII herbicides on seagrass
previously (Table 1). Here we demonstrate that the seagrasses
Z. muelleri (IC50 = 2.5 µgl-1) and H. uninervis (IC50 = 2.4 µgl-1)
were generally more sensitive to the PSII herbicides tested
than tropical corals, microalgae, foraminifera, and crustose
coralline algae tested in similar experiments (Table 6). While
symbionts in the coral Seriatopora hystrix exhibited a similar
IC50 for Diuron [22], only the green alga Nephroselmis
pyriformis had lower IC50s for all herbicides [24]. Diuron was
the most potent of the PSII herbicides tested (lowest IC50) and
a comparison of potencies for PSII herbicides can be made for
each taxa by comparing the Relative Equivalent Potencies
(REP = IC50 (Diuron)/IC50 (PSII herbicide)) where REP = 1 indicates equal
potency as Diuron, while a more potent herbicide will have a
REP of >1, and a less potent herbicide REP of <1 [60]. For
example, Atrazine had an REP of 0.19 for Z. muelleri,
identifying its potency as 19% of the reference herbicide
Diuron. Since the PSII herbicides bind to the same receptor,
these REP values for seagrass can now be used to combine
the contribution of each herbicide in a mixture to a Toxin
Equivalent (TEQ) value [24,60,61], enabling comparison of field
concentrations with guideline values (Table S4) for assessing
risk of herbicides mixtures to seagrass.

Inhibition of maximum potential quantum yield
When PSII herbicides bind to the D1 reaction centre in PSII

in the presence of moderate-high light, excess energy that
cannot be used in photosynthesis is produced. Oxygen radicals
are formed as a result and these have the potential to cause
photooxidative damage to reaction centres [15,49]. A drop in
maximum potential quantum yield (Fv/Fm), which is measured

after a period of photosystem “relaxation” in the dark, signifies
proportional photoinactivation or damage to PSII. This chronic
photoinactivation was observed for all herbicides-seagrass
combinations (Table 5) and occurred at slightly greater
herbicide concentrations (higher IC50s) than the temporary
inhibition of ∆F/Fm′ (Table 4). Two previous studies have
reported IC50s for Fv/Fm inhibition in seagrass by Diuron, with
identical sensitivity reported over 72 h exposures for
Thalassodendron ciliatum [10] and a greater sensitivity
reported for Zostera marina over a 10 day period [35] (Table 6).
The impact of herbicide exposure on chronic photoinhibiton
(Fv/Fm) will depend on the duration of exposure, light intensity
and the protective mechanisms of the seagrass to deal with
oxidative stress and these factors all need to be considered
when assessing comparative impacts on seagrass [62].
Hexazinone caused damage to PSII in the seagrass at lower
concentrations than the other herbicides as seen by the
steeper slopes of the dose response curves, which may signify
a positive interaction between Hexazinone with another
biochemical or stressor on PSII under the experimental
conditions (Fig. 2C and 2D) [63]. Hexazinone also had a strong
impact on Fv/Fm in coral symbionts [19] and unlike ΔF/F’m, the
effects of PSII herbicides in mixtures containing Hexazinone
may not be additive for Fv/Fm.

Whole plant impacts
As described above, exposure to the PSII herbicides is likely

to result in starvation over time caused by reductions in
electron transport and photosynthetic C-fixation. While the
effects of PSII herbicides on photosynthetic efficiency and
damage to photosystem II (as measured using PAM
fluorometry) are the most sensitive measures of stress on
seagrass, exposure to these herbicides has also been shown
to cause whole plant effects (Table 1). Reductions in growth of
Z. marina were observed at Diuron concentrations as low as 5
µg l-1 over 10 days [35] and Atrazine concentrations as low as
10 µg l-1 over 4 weeks [33]. We did not observe inhibition of
seagrass growth following 72 h exposures for any of the
herbicides tested but this is not surprising as the duration of
exposure was likely too short to deplete the plant’s energy
reserves. These reserves are carbohydrates (principally starch,
and some soluble sugars) in the rhizomes, which can sustain
growth in H. uninervis and Z. muelleri for more than a month
even under extremely reduced rates of C-fixation (such as light
stress) [64,65]. Furthermore, although strong reductions in
photosynthetic efficiency were measured in the present study,
the seagrass would still be able to fix some carbon in most
treatments.

Multiple impacts
Results from this study are conservative, as the seagrass in

our experiments were exposed to a moderate light intensity of
280 µE to reflect the median irradiance at the Magnetic Island
collection site [47] and were not thermally stressed. Future
growth and survival studies should take into account the
likelihood that seagrasses are exposed to PSII herbicides
under a range of environmental extremes associated with
riverine run-off during summer monsoonal conditions. These
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added or cumulative impacts could increase the effect of PSII
herbicide exposure at the whole plant level. For example, low
light conditions tend to occur in flood plumes that
simultaneously deliver herbicides and light-reducing suspended
solids into seagrass meadows, and the combined effect of low
light and PSII herbicide exposure would likely lead to more
extreme impacts on plant C-fixation. However, seagrass can
also grow in intertidal habitat (which is particularly common in
the GBR) where they are also periodically exposed to
extremely high (full sun) light levels, which can add oxidative
stress. For example, Delistraty and Hershner [59] reported
growth inhibition in response to 100 µg l-1 Atrazine under high
light conditions of 500-1000 µE m-2s-1 and mortality (mostly
likely due to oxidative stress) was observed after as little as 7
days.

Environmental relevance
The current Australian guidelines for ecosystem protection

from the PSII herbicides are listed in Table S4 and are not
always protective of the effects of these herbicides on
seagrass. For example, the effective quantum yield (∆F/Fm′)
was inhibited by more than 20% in both seagrass species for
Diuron and Tebuthiuron and by 10% for Atrazine and
Hexazinone exposures at concentrations below the GBRMPA

2010 [52] guidelines for 90% species protection (Table 4).
Diuron and Hexazinone also inhibited ∆F/Fm′ in Z. muelleri at
concentrations below the 99% species protection guideline
which is currently applied to this World Heritage Area [52].
Damage to PSII in seagrass (Fv/Fm) was also apparent for
concentrations of Diuron, Hexazinone and Tebuthiuron below
these guidelines (Table 5). While inhibition of photosynthetic
processes in seagrass for short durations may not represent a
catastrophic habitat impact, they do signify a direct and
legitimate physiological impact that is likely to add to other
simultaneous stresses faced by this foundation taxon. Even
ignoring additional stressors, the combined concentrations of
PSII herbicides detected in estuarine and marine waters of the
GBR lagoon during the wet season have exceeded both the
regulatory guidelines [2,4,66] and concentrations that inhibit
photosynthetic efficiency in seagrass (this study). Furthermore,
herbicides are found in estuarine sediment interstitial waters at
concentrations exceeding the water column, even in the dry
season [67], and therefore in situ uptake through the root-
rhizome complex could contribute to chronic impacts. While all
of the PSII herbicides in the present study can contribute to
seagrass toxicity, the relative frequency and detection at toxic
concentrations, combined with its high potency (Table 6)
renders Diuron the PSII herbicide most likely to impact upon
estuarine and coastal waters of the GBR.

Table 6. Comparison of IC50 and herbicide equivalence values for tropical taxa.

  Diuron Atrazine Hexazinone Tebuthiuron  
Taxa/Species Duration IC50 (HEQ) IC50 (HEQ) IC50 (HEQ) IC50 (HEQ) Reference
Seagrass       
Z. muelleri 72 h 2.5 (1.0) 13 (0.19) 4.4 (0.57) 29 (0.086) This study
H. uninervis 72 h 2.4 (1.0) 18 (0.13) 6.9 (0.35) 30 (0.080) This study

Coral       
Acropora millepora 7 d 2.9 (1.0) 47 (0.062) 14 (0.21)  [19]
Seriatopora hystrix 14 h 2.3 (1.0) 45 (0.051) 8.8 (0.26) 175 (0.013) [21]
Acropora formosa 14 h 5.1 (1.0) 37 (0.14)   [22]
Montipora digitata 10 h 5.9 (1.0) 88 (0.067)   [22]
Porites cylindrica 10 h 4.3 (1.0) 67 (0.064)   [22]
Seriatopora hystrix 10 h 2.9    [22]

Diatom       
Navicula sp. 4 h 2.6 (1.0) 36 (0.072) 5.7 (0.46) 94 (0.028) [24]
Cylindrotheca closteriuma 4 h 4.4 (1.0) 77 (0.057) 6.9 (0.64) 77 (0.057) [24]
Phaeodactylum tricornutuma 4 h 2.7 (1.0) 34 (0.079) 6.6 (0.41) 51 (0.053) [24]
Phaeodactylum tricornutuma 2 h 18 (1.0) 45 (0.40) 22 (0.82)  [25]

Green alga       
Nephroselmis pyriformis 4 h 2.1 (1.0) 14 (0.15) 2.4 (0.88) 12 (0.18) [24]

Foraminifera       
Heterostegina depressa 24 h 11    [26]

Crustose algae       
Neogoneolithon fosliei 7 d 8.5 (1.0) 180 (0.047) 152 (0.056)  [19]

All species       
Mean for all species  5.2 (1.0) 54 (0.12) 23 (0.46) 67 (0.070)  

PSII herbicide concentrations (µg l-1) that inhibit effective quantum yield (photosynthetic efficiency ΔF/F’m) by 50% across tropical marine taxa. In brackets are PSII herbicide
equivalence values (HEQ) for each herbicide, derived by dividing the IC50 of the reference herbicide Diuron by the respective IC50 for each herbicide-organism combination.
A relative equivalent potency (REP) of 1 indicates equal potency as Diuron while a more potent herbicide will have a REP of >1, and a less potent herbicide REP of <1.
doi: 10.1371/journal.pone.0075798.t006

Herbicide Toxicity to Seagrass

PLOS ONE | www.plosone.org 9 September 2013 | Volume 8 | Issue 9 | e75798



The greatest wide-spread threat to seagrass populations on
the northern coast of Australia, including the GBR, is light
limitation due to high levels of suspended solids, resulting from
flood plumes and resuspension [43,68]. There is a strong
likelihood that the impacts of light limitation from flood plumes
and reduced photosynthesis from PSII herbicides exported in
the same waters would combine to affect seagrass productivity.
Other stressors such as increased sea surface temperatures
have been shown to combine with herbicides to increase the
effects on coral symbionts [19], but this remains untested for
seagrass. Further research is needed to quantitatively link the
chronic effects of PSII herbicides on photophysiology, growth
and mortality under low light and salinity and high temperature
scenarios experienced during monsoonal floods. Given that
PSII herbicides can affect seagrass at environmental
concentrations, and that seagrasses grow in coastal and
estuarine habitats with a demonstrated risk of exposure to
herbicides [2,4], we suggest that revision of environmental
guidelines and continued efforts to reduce PSII herbicide
concentrations in floodwaters may both help protect seagrass
meadows of the GBR from further decline.
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