1,216 research outputs found

    Detailed volumetric analysis of the hypothalamus in behavioral variant frontotemporal dementia

    Get PDF
    Abnormal eating behaviors are frequently reported in behavioral variant frontotemporal dementia (bvFTD). The hypothalamus is the regulatory center for feeding and satiety but its involvement in bvFTD has not been fully clarified, partly due to its difficult identification on MR images. We measured hypothalamic volume in 18 patients with bvFTD (including 9 MAPT and 6 C9orf72 mutation carriers) and 18 cognitively normal controls using a novel optimized multimodal segmentation protocol, combining 3D T1 and T2-weighted 3T MRIs (intrarater intraclass correlation coefficients ≥0.93). The whole hypothalamus was subsequently segmented into five subunits: the anterior (superior and inferior), tuberal (superior and inferior), and posterior regions. The presence of abnormal eating behavior was assessed with the revised version of the Cambridge Behavioural Inventory (CBI-R). The bvFTD group showed a 17 % lower hypothalamic volume compared with controls (p < 0.001): mean 783 (standard deviation 113) versus 944 (73) mm(3) (corrected for total intracranial volume). In the hypothalamic subunit analysis, the superior parts of the anterior and tuberal regions and the posterior region were significantly smaller in the bvFTD group compared with controls. There was a trend for a smaller hypothalamic volume, particularly in the superior tuberal region, in those with severe eating disturbance scores on the CBI-R. Differences were seen between the two genetic subgroups with significantly smaller volumes in the MAPT but not the C9orf72 group compared with controls. In summary, bvFTD patients had lower hypothalamic volumes compared with controls. Different genetic mutations may have a differential impact on the hypothalamus

    Cancer and Chronic Diseases in Minority Populations: The Need for More Educational Materials in Spanish for Healthcare Providers

    Get PDF
    This short communication piece provides an overview of the Latin American Supercourse, a collection of public health lectures in Spanish targeting educators in Mexico, US, and Spanish speaking countries

    Evolutionary variation in the expression of phenotypically plastic color vision in Caribbean mantis shrimps, genus Neogonodactylus

    Get PDF
    Author Posting. © The Author(s), 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Marine Biology 150 (2006): 213-220, doi:10.1007/s00227-006-0313-5.Many animals have color vision systems that are well suited to their local environments. Changes in color vision can occur over long periods (evolutionary time), or over relatively short periods such as during development. A select few animals, including stomatopod crustaceans, are able to adjust their systems of color vision directly in response to varying environmental stimuli. Recently, it has been shown that juveniles of some stomatopod species that inhabit a range of depths can spectrally tune their color vision to local light conditions through spectral changes in filters contained in specialized photoreceptors. The present study quantifies the potential for spectral tuning in adults of three species of Caribbean Neogonodactylus stomatopods that differ in their depth ranges to assess how ecology and evolutionary history influence the expression of phenotypically plastic color vision in adult stomatopods. After 12 weeks in either a full-spectrum “white” or a narrow-spectrum “blue” light treatment, each of the three species evidenced distinctive tuning abilities with respect to the light environment that could be related to its natural depth range. A molecular phylogeny generated using mitochondrial cytochrome oxidase C subunit 1 (CO-1) was used to determine whether tuning abilities were phylogenetically or ecologically constrained. Although the sister taxa N. wennerae and N. bredini both exhibited spectral tuning, their ecology (i.e. preferred depth range) strongly influenced the expression of the phenotypically plastic color vision trait. Our results indicate that adult stomatopods have evolved the ability to undergo habitat-specific spectral tuning, allowing rapid facultative physiological modification to suit ecological constraints.This research was funded partially by NSF grant (IBN-0235820) to TWC and Sigma Xi Grants-in-Aid to AGC and by the National Coral Reef Institute through a subaward to PHB and RL Caldwell through the NOAA Coastal Ocean Program under award #NA16OA2413, to Nova Southeastern University

    Strategies to facilitate integrated care for people with alcohol and other drug problems: a systematic review

    Get PDF
    Background: There is a growing body of research highlighting the potential benefits of integrated care as a way of addressing the needs of people with alcohol and other drug (AOD) problems, given the broad range of other issues clients often experience. However, there has been little academic attention on the strategies that treatment systems, agencies and clinicians could implement to facilitate integrated care. Methods: We synthesised the existing evidence on strategies to improve integrated care in an AOD treatment context by conducting a systematic review of the literature. We searched major academic databases for peer-reviewed articles that evaluated strategies that contribute to integrated care in an AOD context between 1990 and 2014. Over 2600 articles were identified, of which 14 met the study inclusion criteria of reporting on an empirical study to evaluate the implementation of integrated care strategies. The types of strategies utilised in included articles were then synthesised. Results: We identified a number of interconnected strategies at the funding, organisational, service delivery and clinical levels. Ensuring that integrated care is included within service specifications of commissioning bodies and is adequately funded was found to be critical in effective integration. Cultivating positive inter-agency relationships underpinned and enabled the implementation of most strategies identified. Staff training in identifying and responding to needs beyond clinicians' primary area of expertise was considered important at a service level. However, some studies highlight the need to move beyond discrete training events and towards longer term coaching-type activities focussed on implementation and capacity building. Sharing of client information (subject to informed consent) was critical for most integrated care strategies. Case-management was found to be a particularly good approach to responding to the needs of clients with multiple and complex needs. At the clinical level, screening in areas beyond a clinician's primary area of practice was a common strategy for facilitating referral and integrated care, as was joint care planning. Conclusion: Despite considerable limitations and gaps in the literature in terms of the evaluation of integrated care strategies, particularly between AOD services, our review highlights several strategies that could be useful at multiple levels. Given the interconnectedness of integrated care strategies identified, implementation of multi-level strategies rather than single strategies is likely to be preferable

    Emergent complex neural dynamics

    Full text link
    A large repertoire of spatiotemporal activity patterns in the brain is the basis for adaptive behaviour. Understanding the mechanism by which the brain's hundred billion neurons and hundred trillion synapses manage to produce such a range of cortical configurations in a flexible manner remains a fundamental problem in neuroscience. One plausible solution is the involvement of universal mechanisms of emergent complex phenomena evident in dynamical systems poised near a critical point of a second-order phase transition. We review recent theoretical and empirical results supporting the notion that the brain is naturally poised near criticality, as well as its implications for better understanding of the brain

    Evidence for a Minimal Eukaryotic Phosphoproteome?

    Get PDF
    BACKGROUND: Reversible phosphorylation catalysed by kinases is probably the most important regulatory mechanism in eukaryotes. METHODOLOGY/PRINCIPAL FINDINGS: We studied the in vitro phosphorylation of peptide arrays exhibiting the majority of PhosphoBase-deposited protein sequences, by factors in cell lysates from representatives of various branches of the eukaryotic species. We derived a set of substrates from the PhosphoBase whose phosphorylation by cellular extracts is common to the divergent members of different kingdoms and thus may be considered a minimal eukaryotic phosphoproteome. The protein kinases (or kinome) responsible for phosphorylation of these substrates are involved in a variety of processes such as transcription, translation, and cytoskeletal reorganisation. CONCLUSIONS/SIGNIFICANCE: These results indicate that the divergence in eukaryotic kinases is not reflected at the level of substrate phosphorylation, revealing the presence of a limited common substrate space for kinases in eukaryotes and suggests the presence of a set of kinase substrates and regulatory mechanisms in an ancestral eukaryote that has since remained constant in eukaryotic life
    corecore