341 research outputs found
Modular cell biology: retroactivity and insulation
Modularity plays a fundamental role in the prediction of the behavior of a system from the behavior of its components, guaranteeing that the properties of individual components do not change upon interconnection. Just as electrical, hydraulic, and other physical systems often do not display modularity, nor do many biochemical systems, and specifically, genetic networks. Here, we study the effect of interconnections on the input–output dynamic characteristics of transcriptional components, focusing on a property, which we call ‘retroactivity', that plays a role analogous to non-zero output impedance in electrical systems. In transcriptional networks, retroactivity is large when the amount of transcription factor is comparable to, or smaller than, the amount of promoter-binding sites, or when the affinity of such binding sites is high. To attenuate the effect of retroactivity, we propose a feedback mechanism inspired by the design of amplifiers in electronics. We introduce, in particular, a mechanism based on a phosphorylation–dephosphorylation cycle. This mechanism enjoys a remarkable insulation property, due to the fast timescales of the phosphorylation and dephosphorylation reactions
Hierarchy Theory of Evolution and the Extended Evolutionary Synthesis: Some Epistemic Bridges, Some Conceptual Rifts
Contemporary evolutionary biology comprises a plural landscape of multiple co-existent conceptual frameworks and strenuous voices that disagree on the nature and scope of evolutionary theory. Since the mid-eighties, some of these conceptual frameworks have denounced the ontologies of the Modern Synthesis and of the updated Standard Theory of Evolution as unfinished or even flawed. In this paper, we analyze and compare two of those conceptual frameworks, namely Niles Eldredge’s Hierarchy Theory of Evolution (with its extended ontology of evolutionary entities) and the Extended Evolutionary Synthesis (with its proposal of an extended ontology of evolutionary processes), in an attempt to map some epistemic bridges (e.g. compatible views of causation; niche construction) and some conceptual rifts (e.g. extra-genetic inheritance; different perspectives on macroevolution; contrasting standpoints held in the “externalism–internalism” debate) that exist between them. This paper seeks to encourage theoretical, philosophical and historiographical discussions about pluralism or the possible unification of contemporary evolutionary biology
The clinical features of the piriformis syndrome: a systematic review
Piriformis syndrome, sciatica caused by compression of the sciatic nerve by the piriformis muscle, has been described for over 70 years; yet, it remains controversial. The literature consists mainly of case series and narrative reviews. The objectives of the study were: first, to make the best use of existing evidence to estimate the frequencies of clinical features in patients reported to have PS; second, to identify future research questions. A systematic review was conducted of any study type that reported extractable data relevant to diagnosis. The search included all studies up to 1 March 2008 in four databases: AMED, CINAHL, Embase and Medline. Screening, data extraction and analysis were all performed independently by two reviewers. A total of 55 studies were included: 51 individual and 3 aggregated data studies, and 1 combined study. The most common features found were: buttock pain, external tenderness over the greater sciatic notch, aggravation of the pain through sitting and augmentation of the pain with manoeuvres that increase piriformis muscle tension. Future research could start with comparing the frequencies of these features in sciatica patients with and without disc herniation or spinal stenosis
Intraspecific Inversions Pose a Challenge for the trnH-psbA Plant DNA Barcode
BACKGROUND: The chloroplast trnH-psbA spacer region has been proposed as a prime candidate for use in DNA barcoding of plants because of its high substitution rate. However, frequent inversions associated with palindromic sequences within this region have been found in multiple lineages of Angiosperms and may complicate its use as a barcode, especially if they occur within species. METHODOLOGY/PRINCIPAL FINDINGS: Here, we evaluate the implications of intraspecific inversions in the trnH-psbA region for DNA barcoding efforts. We report polymorphic inversions within six species of Gentianaceae, all narrowly circumscribed morphologically: Gentiana algida, Gentiana fremontii, Gentianopsis crinita, Gentianopsis thermalis, Gentianopsis macrantha and Frasera speciosa. We analyze these sequences together with those from 15 other species of Gentianaceae and show that typical simple methods of sequence alignment can lead to misassignment of conspecifics and incorrect assessment of relationships. CONCLUSIONS/SIGNIFICANCE: Frequent inversions in the trnH-psbA region, if not recognized and aligned appropriately, may lead to large overestimates of the number of substitution events separating closely related lineages and to uniting more distantly related taxa that share the same form of the inversion. Thus, alignment of the trnH-psbA spacer region will need careful attention if it is used as a marker for DNA barcoding
Proportionality between variances in gene expression induced by noise and mutation: consequence of evolutionary robustness
<p>Abstract</p> <p>Background</p> <p>Characterization of robustness and plasticity of phenotypes is a basic issue in evolutionary and developmental biology. The robustness and plasticity are concerned with changeability of a biological system against external perturbations. The perturbations are either genetic, i.e., due to mutations in genes in the population, or epigenetic, i.e., due to noise during development or environmental variations. Thus, the variances of phenotypes due to genetic and epigenetic perturbations provide quantitative measures for such changeability during evolution and development, respectively.</p> <p>Results</p> <p>Using numerical models simulating the evolutionary changes in the gene regulation network required to achieve a particular expression pattern, we first confirmed that gene expression dynamics robust to mutation evolved in the presence of a sufficient level of transcriptional noise. Under such conditions, the two types of variances in the gene expression levels, i.e. those due to mutations to the gene regulation network and those due to noise in gene expression dynamics were found to be proportional over a number of genes. The fraction of such genes with a common proportionality coefficient increased with an increase in the robustness of the evolved network. This proportionality was generally confirmed, also under the presence of environmental fluctuations and sexual recombination in diploids, and was explained from an evolutionary robustness hypothesis, in which an evolved robust system suppresses the so-called error catastrophe - the destabilization of the single-peaked distribution in gene expression levels. Experimental evidences for the proportionality of the variances over genes are also discussed.</p> <p>Conclusions</p> <p>The proportionality between the genetic and epigenetic variances of phenotypes implies the correlation between the robustness (or plasticity) against genetic changes and against noise in development, and also suggests that phenotypic traits that are more variable epigenetically have a higher evolutionary potential.</p
Survivability Is More Fundamental Than Evolvability
For a lineage to survive over long time periods, it must sometimes change. This has given rise to the term evolvability, meaning the tendency to produce adaptive variation. One lineage may be superior to another in terms of its current standing variation, or it may tend to produce more adaptive variation. However, evolutionary outcomes depend on more than standing variation and produced adaptive variation: deleterious variation also matters. Evolvability, as most commonly interpreted, is not predictive of evolutionary outcomes. Here, we define a predictive measure of the evolutionary success of a lineage that we call the k-survivability, defined as the probability that the lineage avoids extinction for k generations. We estimate the k-survivability using multiple experimental replicates. Because we measure evolutionary outcomes, the initial standing variation, the full spectrum of generated variation, and the heritability of that variation are all incorporated. Survivability also accounts for the decreased joint likelihood of extinction of sub-lineages when they 1) disperse in space, or 2) diversify in lifestyle. We illustrate measurement of survivability with in silico models, and suggest that it may also be measured in vivo using multiple longitudinal replicates. The k-survivability is a metric that enables the quantitative study of, for example, the evolution of 1) mutation rates, 2) dispersal mechanisms, 3) the genotype-phenotype map, and 4) sexual reproduction, in temporally and spatially fluctuating environments. Although these disparate phenomena evolve by well-understood microevolutionary rules, they are also subject to the macroevolutionary constraint of long-term survivability
Psychologists’ dilemmas in career counselling practice
In this study, we explored main dilemmas psychologists face in career
counselling in two main professional settings: employment and education. Participants
included 24 experienced Portuguese psychologists, working in employment
(n = 14) and educational (n = 10) settings. We used consensual qualitative
research to conduct and analyse semi-structured interviews. Results revealed
dilemmas’ in five domains: neutrality, assessment, dual loyalty, role boundaries, and
confidentiality, with the typical dilemma in the domain of neutrality. Differences
between groups were found in the domains of dual loyalty and role boundaries.Dans cette étude, nous avons exploré les principaux dilemmes rencontrés
par les psychologues dans le conseil en orientation dans deux milieux professionnels
centraux: le placement et l’éducation. Parmi les participants figuraient 24 psychologues
portugais expérimentés travaillant dans des contextes de placement (n = 14)
et d’éducation (n = 10). Nous avons utilisé la recherche qualitative consensuelle
pour mener et analyser les entretiens semi-structurés. Les re´sultats ont révé lé des
dilemmes dans cinq domaines: la neutralité, l’évaluation, la double loyauté, les
limites du rôle, et la confidentialité, avec le dilemme typique dans le domaine de la
neutralité. Les différences entre les groupes ont été identifiees dans les domaines de
la double loyauté et les limites du rôle.In dieser Studie untersuchten wir die hauptsä chlichen Dilemmata, mit denen Psychologen in der Berufsberatung in zwei wesentlichen professionellen
Einrichtungen konfrontiert sind: Beruf und Bildung. Zu den Teilnehmern geho
¨rten 24 erfahrene portugiesische Psychologen, die in Einrichtungen von Beruf
(n = 14) und Bildung (n = 10) arbeiteten. Wir verwendeten einvernehmliche
qualitative Forschung um semi-strukturierte Interviews durchzufu¨hren und zu
analysieren. Die Ergebnisse zeigten Dilemmata in fünf Bereichen: Neutralität,
Beurteilung, doppelte Loyalität, Rollengrenzen und Vertraulichkeit, mit dem
typischen Dilemma in der Domäne der Neutralität. Unterschiede zwischen den
Gruppen wurden in den Bereichen der doppelten Loyalität und Rollengrenzen
gefunden
Promoter Nucleosome Organization Shapes the Evolution of Gene Expression
Understanding why genes evolve at different rates is fundamental to evolutionary thinking. In species of the budding yeast, the rate at which genes diverge in expression correlates with the organization of their promoter nucleosomes: genes lacking a nucleosome-free region (denoted OPN for “Occupied Proximal Nucleosomes”) vary widely between the species, while the expression of those containing NFR (denoted DPN for “Depleted Proximal Nucleosomes”) remains largely conserved. To examine if early evolutionary dynamics contributes to this difference in divergence, we artificially selected for high expression of GFP–fused proteins. Surprisingly, selection was equally successful for OPN and DPN genes, with ∼80% of genes in each group stably increasing in expression by a similar amount. Notably, the two groups adapted by distinct mechanisms: DPN–selected strains duplicated large genomic regions, while OPN–selected strains favored trans mutations not involving duplications. When selection was removed, DPN (but not OPN) genes reverted rapidly to wild-type expression levels, consistent with their lower diversity between species. Our results suggest that promoter organization constrains the early evolutionary dynamics and in this way biases the path of long-term evolution
- …