12 research outputs found

    Using genetic methods to investigate dispersal in two badger (Meles meles) populations with different ecological characteristics

    No full text
    Understanding the dispersal behaviour of a species is important for understanding its ecology and evolution. Dispersal in the Eurasian badger (Meles meles) is believed to be very limited, with social groups forming primarily through the retention of offspring. However, most of our knowledge of dispersal in this species comes from studies of high-density populations in the United Kingdom, where badgers are atypical in their behaviour, physiology, ecology and prey specialization. In this study we use genetic methods to compare dispersal patterns in a British and a Swiss population that differ in their ecology and demography. We present well-supported evidence that badgers disperse much further in the low-density continental population, where dispersal may also be female biased. Limited dispersal thus seems not to be an intrinsic behavioural characteristic of the species. Rather, dispersal patterns seem to vary depending on population demography and, ultimately, habitat quality and characteristics. This could have important management consequences, as dispersal can affect the impact of local extinction, and host dispersal has a particularly important role in disease transmission. Even though concentrated studies of a species in a single location may not provide representative data for the species, there are few mammalian studies that compare demography and dispersal patterns across contrasting habitats. Our results provide an example of phenotypic plasticity and suggest that dispersal is determined by the interaction of individual, social and environmental factors that may differ between populations. Heredity (2010) 104, 493-501; doi:10.1038/hdy.2009.136; published online 7 October 200

    Multi-taxa surveys: Integrating ecosystem processes and user demands

    No full text
    Globally, natural resource management agencies are increasingly recognizing the importance of long-term ecological research (LTER) for monitoring biodiversity, ranging from relatively simple, known, local-level issues, such as managing tourist impacts in a conservation park, to more complex, multifaceted, pervasive, and far-reaching impacts, such as global climate change. Much previous literature has confused protocols for LTER projects to answer current research questions, with developing a system for long-term ecological monitoring. Contrary to perceptions that these LTER systems are not driven by well-defined objectives, we argue that LTER systems can be designed and implemented with the specific objective of providing a basis for both LTER projects and long-term monitoring. We present an overview of RAPELD, an LTER system developed in Brazil, with comparable infrastructure established in Australia and Nepal. The standardized biodiversity infrastructure and research platform provides a long-term basis for powerful multi-disciplinary, multi-scale analyses. © 2014 Springer-Verlag Berlin Heidelberg. All rights are reserved

    State-of-the-art practices in farmland biodiversity monitoring for North America and Europe

    No full text
    Policy makers and farmers need to know the status of farmland biodiversity in order to meet conservation goals and evaluate management options. Based on a review of 11 monitoring programs in Europe and North America and on related literature, we identify the design choices or attributes of a program that balance monitoring costs and usefulness for stakeholders. A useful program monitors habitats, vascular plants, and possibly faunal groups (ecosystem service providers, charismatic species) using a stratified random sample of the agricultural landscape, including marginal and intensive regions. The size of landscape samples varies with the grain of the agricultural landscape; for example, samples are smaller in Europe and larger in North America. Raw data are collected in a rolling survey, which distributes sampling over several years. Sufficient practical experience is now available to implement broad monitoring schemes on both continents. Technological developments in remote sensing, metagenomics, and social media may offer new opportunities for affordable farmland biodiversity monitoring and help to lower the overall costs of monitoring programs

    Habitat choice, recruitment and the response of coral reef fishes to coral degradation

    No full text
    The global degradation of coral reefs is having profound effects on the structure and species richness of associated reef fish assemblages. Historically, variation in the composition of fish communities has largely been attributed to factors affecting settlement of reef fish larvae. However, the mechanisms that determine how fish settlers respond to different stages of coral stress and the extent of coral loss on fish settlement are poorly understood. Here, we examined the effects of habitat degradation on fish settlement using a two-stage experimental approach. First, we employed laboratory choice experiments to test how settlers responded to early and terminal stages of coral degradation. We then quantified the settlement response of the whole reef fish assemblage in a field perturbation experiment. The laboratory choice experiments tested how juveniles from nine common Indo-Pacific fishes chose among live colonies, partially degraded colonies, and dead colonies with recent algal growth. Many species did not distinguish between live and partially degraded colonies, suggesting settlement patterns are resilient to the early stages of declining coral health. Several species preferred live or degraded corals, and none preferred to associate with dead, algal-covered colonies. In the field experiment, fish recruitment to coral colonies was monitored before and after the introduction of a coral predator (the crown-of-thorns starfish) and compared with undisturbed control colonies. Starfish reduced live coral cover by 95–100%, causing persistent negative effects on the recruitment of coral-associated fishes. Rapid reductions in new recruit abundance, greater numbers of unoccupied colonies and a shift in the recruit community structure from one dominated by coral-associated fishes before degradation to one predominantly composed of algal-associated fish species were observed. Our results suggest that while resistant to coral stress, coral death alters the process of replenishment of coral reef fish communities
    corecore