75 research outputs found

    HVEM Signalling Promotes Colitis

    Get PDF
    Background Tumor necrosis factor super family (TNFSF) members regulate important processes involved in cell proliferation, survival and differentiation and are therefore crucial for the balance between homeostasis and inflammatory responses. Several members of the TNFSF are closely associated with inflammatory bowel disease (IBD). Thus, they represent interesting new targets for therapeutic treatment of IBD. Methodology/Principal Findings We have used mice deficient in TNFSF member HVEM in experimental models of IBD to investigate its role in the disease process. Two models of IBD were employed: i) chemical-induced colitis primarily mediated by innate immune cells; and ii) colitis initiated by CD4+CD45RBhigh T cells following their transfer into immuno-deficient RAG1-/- hosts. In both models of disease the absence of HVEM resulted in a significant reduction in colitis and inflammatory cytokine production. Conclusions These data show that HVEM stimulatory signals promote experimental colitis driven by innate or adaptive immune cells

    Development of Highly Organized Lymphoid Structures in Buruli Ulcer Lesions after Treatment with Rifampicin and Streptomycin

    Get PDF
    Buruli ulcer (BU) is a debilitating disease of the skin presenting with extensive tissue destruction and suppression of local host defence mechanisms. Surgical removal of the affected area has been the standard therapy until in 2004 WHO recommended eight weeks' treatment with the anti-mycobacterial drugs rifampicin and streptomycin. We performed a detailed histological analysis of the local immune response in biopsies from five children medicated according to WHO provisional guidelines. One patient still revealed all histopathological signatures of an active BU lesion with huge bacterial clusters in areas of fatty tissue necrosis. Different factors can contribute to treatment failure, such as poor patient compliance and resistant bacterial strains. In four patients, different compartments of the skin presented active immune processes with only limited residues of bacterial material persisting. We demonstrated that antibiotic treatment not only directly controls the infectious agent but is also associated with fulminant host immune responses. Characterization of the healing process in BU due to therapy is highly relevant to increase our knowledge of the impact of treatment strategies to fight the disease

    Promotion of variant human mammary epithelial cell outgrowth by ionizing radiation: an agent-based model supported by in vitro studies

    Get PDF
    IntroductionMost human mammary epithelial cells (HMEC) cultured from histologically normal breast tissues enter a senescent state termed stasis after 5 to 20 population doublings. These senescent cells display increased size, contain senescence associated beta-galactosidase activity, and express cyclin-dependent kinase inhibitor, p16INK4A (CDKN2A; p16). However, HMEC grown in a serum-free medium, spontaneously yield, at low frequency, variant (v) HMEC that are capable of long-term growth and are susceptible to genomic instability. We investigated whether ionizing radiation, which increases breast cancer risk in women, affects the rate of vHMEC outgrowth.MethodsPre-stasis HMEC cultures were exposed to 5 to 200 cGy of sparsely (X- or gamma-rays) or densely (1 GeV/amu 56Fe) ionizing radiation. Proliferation (bromodeoxyuridine incorporation), senescence (senescence-associated beta-galactosidase activity), and p16 expression were assayed in subcultured irradiated or unirradiated populations four to six weeks following radiation exposure, when patches of vHMEC became apparent. Long-term growth potential and p16 promoter methylation in subsequent passages were also monitored. Agent-based modeling, incorporating a simple set of rules and underlying assumptions, was used to simulate vHMEC outgrowth and evaluate mechanistic hypotheses.ResultsCultures derived from irradiated cells contained significantly more vHMEC, lacking senescence associated beta-galactosidase or p16 expression, than cultures derived from unirradiated cells. As expected, post-stasis vHMEC cultures derived from both unirradiated and irradiated cells exhibited more extensive methylation of the p16 gene than pre-stasis HMEC cultures. However, the extent of methylation of individual CpG sites in vHMEC samples did not correlate with passage number or treatment. Exposure to sparsely or densely ionizing radiation elicited similar increases in the numbers of vHMEC compared to unirradiated controls. Agent-based modeling indicated that radiation-induced premature senescence of normal HMEC most likely accelerated vHMEC outgrowth through alleviation of spatial constraints. Subsequent experiments using defined co-cultures of vHMEC and senescent cells supported this mechanism.ConclusionsOur studies indicate that ionizing radiation can promote the outgrowth of epigenetically altered cells with pre-malignant potential

    Defining high endothelial venules and tertiary lymphoid structures in cancer

    Get PDF
    High endothelial venules (HEVs) are structurally distinct blood vessels that develop during embryonic and neonatal life in all secondary lymphoid organs except the spleen. HEVs are critical for initiating and maintaining immune responses because they extract naïve and memory lymphocytes from the bloodstream, regardless of antigen receptor specificity, and deliver them to antigen-presenting cells inside lymph nodes under homeostatic conditions. HEVs also develop postnatally in nonlymphoid organs during chronic inflammation driven by autoimmunity, infection, allografts, and cancer. Extranodal HEVs are usually surrounded by dense lymphocytic infiltrates organized into lymph-node like, T- and B-cell-rich areas called tertiary lymphoid structures (TLS). HEV neogenesis is thought to facilitate the generation of tissue-destroying lymphocytes inside chronically inflamed tissues and cancers. We are studying the mechanisms underpinning HEV neogenesis in solid cancers and the role of homeostatic T-cell trafficking in controlling cancer immunity. In this chapter we describe methods for identifying HEV in tissue sections of cancerous tissues in humans and mice using immunohistochemical staining for the HEV-specific marker peripheral lymph node addressin (PNAd). L-selectin binding to PNAd is a necessary first step in homeostatic lymphocyte trafficking which is the defining function of HEV. We also describe methods to measure L-selectin-dependent homing of lymphocytes from the bloodstream into lymphoid tissues and tumors in preclinical cancer model

    Lymphotoxin expression in human and murine renal allografts

    Get PDF
    The kidney is the most frequently transplanted solid organ. Recruitment of inflammatory cells, ranging from diffuse to nodular accumulations with defined microarchitecture, is a hallmark of acute and chronic renal allograft injury. Lymphotoxins (LTs) mediate the communication of lymphocytes and stromal cells and play a pivotal role in chronic inflammation and formation of lymphoid tissue. The aim of this study was to assess the expression of members of the LT system in acute rejection (AR) and chronic renal allograft injury such as transplant glomerulopathy (TG) and interstitial fibrosis/tubular atrophy (IFTA). We investigated differentially regulated components in transcriptomes of human renal allograft biopsies. By microarray analysis, we found the upregulation of LT beta, LIGHT, HVEM and TNF receptors 1 and 2 in AR and IFTA in human renal allograft biopsies. In addition, there was clear evidence for the activation of the NF kappa B pathway, most likely a consequence of LT beta receptor stimulation. In human renal allograft biopsies with transplant glomerulopathy (TG) two distinct transcriptional patterns of LT activation were revealed. By quantitative RT-PCR robust upregulation of LTa, LT beta and LIGHT was shown in biopsies with borderline lesions and AR. Immunohistochemistry revealed expression of LT beta in tubular epithelial cells and inflammatory infiltrates in transplant biopsies with AR and IFTA. Finally, activation of LT signaling was reproduced in a murine model of renal transplantation with AR. In summary, our results indicate a potential role of the LT system in acute renal allograft rejection and chronic transplant injury. Activation of the LT system in allograft rejection in rodents indicates a species independent mechanism. The functional role of the LT system in acute renal allograft rejection and chronic injury remains to be determined

    Tertiary Lymphoid Organs in Rheumatoid Arthritis.

    Get PDF
    Rheumatoid Arthritis (RA) is a chronic systemic autoimmune disease. RA mainly affects the joints, with inflammation of the synovial membrane, characterized by hyperplasia, neo-angiogenesis, and immune cell infiltration that drives local inflammation and, if untreated, can lead to joint destruction and disability. In parallel to the well-known clinical heterogeneity, the underlying synovitis can also be significantly heterogeneous. In particular, in about 40% of patients with RA, synovitis is characterized by a dense lymphocytic infiltrate that can acquire the features of fully functional tertiary lymphoid organs (TLO). These structures amplify autoimmunity and inflammation locally associated with worse prognosis and potential implications for treatment response. Here, we will review the current knowledge on TLO in RA, with a focus on their pathogenetic and clinical relevance

    Lymph Drainage

    No full text
    • …
    corecore