18 research outputs found

    Position paper: The potential role of optical biopsy in the study and diagnosis of environmental enteric dysfunction

    Get PDF
    Environmental enteric dysfunction (EED) is a disease of the small intestine affecting children and adults in low and middle income countries. Arising as a consequence of repeated infections, gut inflammation results in impaired intestinal absorptive and barrier function, leading to poor nutrient uptake and ultimately to stunting and other developmental limitations. Progress towards new biomarkers and interventions for EED is hampered by the practical and ethical difficulties of cross-validation with the gold standard of biopsy and histology. Optical biopsy techniques — which can provide minimally invasive or noninvasive alternatives to biopsy — could offer other routes to validation and could potentially be used as point-of-care tests among the general population. This Consensus Statement identifies and reviews the most promising candidate optical biopsy technologies for applications in EED, critically assesses them against criteria identified for successful deployment in developing world settings, and proposes further lines of enquiry. Importantly, many of the techniques discussed could also be adapted to monitor the impaired intestinal barrier in other settings such as IBD, autoimmune enteropathies, coeliac disease, graft-versus-host disease, small intestinal transplantation or critical care

    Raman spectroscopic analysis of minerals and organic molecules of relevance to astrobiology

    No full text
    Characteristic geological features and hydrated minerals recently found on the surface of Mars by the NASA planetary rovers Spirit and Opportunity suggest that a possible biosphere could have once existed there. Analytical instrumentation protocols for the unequivocal detection of biomarkers in suitable geological matrices are critical for future unmanned explorations, including the forthcoming ESA-ExoMars mission scheduled for 2018. Raman spectroscopy is currently a part of the Pasteur instrumentation suite of the ExoMars mission scheduled for 2018 for the remote detection of extant or extinct life signatures in the Martian surface and subsurface. Terrestrial analogues of Martian sites have been identified, and the biogeological modifications incurred as a result of extremophilic survival activity have been studied. Polyaromatic hydrocarbons (PAHs) are recognised as a class of degradation product that occur from biological processes terrestrially. In this work, various concentrations of polyaromatic hydrocarbons in matrices of gypsum, calcite and quartz have been investigated by Raman microspectrometry to determine the lowest detectable organic levels. The studies are conceived in simulation of their potential PAHs identification in geobiological conditions in Martian scenarios. Two laser source wavelengths, namely, 785 and 633 nm, were adopted to excite Raman spectra from the PAHs, which represent degraded carbons and therefore potentially provide a key bimolecular marker of ancient life. © 2009 Springer-Verlag

    Raman and SEM analysis of a biocolonised hot spring travertine terrace in Svalbard, Norway

    Get PDF
    A profile across 8 layers from a fossil travertine terrace from a low temperature geothermal spring located in Svalbard, Norway has been studied using both Raman spectroscopy and SEM (Scanning Electron Microscopy) techniques to identify minerals and organic life signals. Calcite, anatase, quartz, haematite, magnetite and graphite as well as scytonemin, three different carotenoids, chlorophyll and a chlorophyll-like compound were identified as geo- and biosignatures respectively, using 785 and/or 514 nm Raman laser excitation wavelengths. No morphological biosignatures representing remnant microbial signals were detected by high-resolution imaging, although spectral analyses indicated the presence of organics. In contrast, in all layers, Raman spectra identified a series of different organic pigments indicating little to no degradation or change of the organic signatures and thus indicating the preservation of fossil biomarker compounds throughout the life time of the springs despite the lack of remnant morphological indicators. With a view towards planetary exploration we discuss the implications of the differences in Raman band intensities observed when spectra were collected with the different laser excitations. We show that these differences, as well as the different detection capability of the 785 and 514 nm laser, could lead to ambiguous compound identification. We show that the identification of bio and geosignatures, as well as fossil organic pigments, using Raman spectroscopy is possible. These results are relevant since both lasers have been considered for miniaturized Raman spectrometers for planetary exploration
    corecore