40 research outputs found

    Transmural Ultrasound-based Visualization of Patterns of Action Potential Wave Propagation in Cardiac Tissue

    Get PDF
    The pattern of action potential propagation during various tachyarrhythmias is strongly suspected to be composed of multiple re-entrant waves, but has never been imaged in detail deep within myocardial tissue. An understanding of the nature and dynamics of these waves is important in the development of appropriate electrical or pharmacological treatments for these pathological conditions. We propose a new imaging modality that uses ultrasound to visualize the patterns of propagation of these waves through the mechanical deformations they induce. The new method would have the distinct advantage of being able to visualize these waves deep within cardiac tissue. In this article, we describe one step that would be necessary in this imaging process—the conversion of these deformations into the action potential induced active stresses that produced them. We demonstrate that, because the active stress induced by an action potential is, to a good approximation, only nonzero along the local fiber direction, the problem in our case is actually overdetermined, allowing us to obtain a complete solution. Use of two- rather than three-dimensional displacement data, noise in these displacements, and/or errors in the measurements of the fiber orientations all produce substantial but acceptable errors in the solution. We conclude that the reconstruction of action potential-induced active stress from the deformation it causes appears possible, and that, therefore, the path is open to the development of the new imaging modality

    Visualization of elusive structures using intracardiac echocardiography: Insights from electrophysiology

    Get PDF
    Electrophysiological mapping and ablation techniques are increasingly used to diagnose and treat many types of supraventricular and ventricular tachycardias. These procedures require an intimate knowledge of intracardiac anatomy and their use has led to a renewed interest in visualization of specific structures. This has required collaborative efforts from imaging as well as electrophysiology experts. Classical imaging techniques may be unable to visualize structures involved in arrhythmia mechanisms and therapy. Novel methods, such as intracardiac echocardiography and three-dimensional echocardiography, have been refined and these technological improvements have opened new perspectives for more effective and accurate imaging during electrophysiology procedures. Concurrently, visualization of these structures noticeably improved our ability to identify intracardiac structures. The aim of this review is to provide electrophysiologists with an overview of recent insights into the structure of the heart obtained with intracardiac echocardiography and to indicate to the echo-specialist which structures are potentially important for the electrophysiologist

    Cardiac resynchronization therapy guided by cardiovascular magnetic resonance

    Get PDF
    Cardiac resynchronization therapy (CRT) is an established treatment for patients with symptomatic heart failure, severely impaired left ventricular (LV) systolic dysfunction and a wide (> 120 ms) complex. As with any other treatment, the response to CRT is variable. The degree of pre-implant mechanical dyssynchrony, scar burden and scar localization to the vicinity of the LV pacing stimulus are known to influence response and outcome. In addition to its recognized role in the assessment of LV structure and function as well as myocardial scar, cardiovascular magnetic resonance (CMR) can be used to quantify global and regional LV dyssynchrony. This review focuses on the role of CMR in the assessment of patients undergoing CRT, with emphasis on risk stratification and LV lead deployment

    Persistent wandering atrial pacemaker after epinephrine overdosing – a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Long-term complications of sympathomimetic drug overdosing have not been adequately investigated in infants and young children. Despite reports discouraging their use in children, these formulations are frequently administered for “cold-like symptoms”. Their frequent adverse events are different forms of arrhythmias, including multifocal atrial tachycardia.</p> <p>Case presentation</p> <p>A 3-year-old toddler developed multifocal atrial tachycardia following an iatrogenic overdose of epinephrine accidentally administered intravenously. His ECG showed wandering atrial pacemaker (p-waves with different origins and configurations) that persisted for at least one year. This event demonstrated the sensitivity of young children to the sympathomimetic drugs, especially overdosing.</p> <p>Conclusions</p> <p>Health care providers and parents should be warned of toxicities associated with sympathomimetic drug overdosing. Future studies are needed to determine whether wandering atrial pacemaker is a potential long-term complication of high-dose sympathomimetics.</p
    corecore