196 research outputs found
A new nail with a locking blade for complex proximal humeral fractures
INTRODUCTION: The objective of this study was to assess the clinical outcome of displaced proximal humerus fracture treated with a new locking blade nail. MATERIALS AND METHODS: This prospective study included a series of 92 patients with acute fracture of the proximal humerus treated in one hospital level I trauma centre with locking blade nail between December 2010 and December 2013. According to the Neer classification, all fractures were two- to four-part fractures. Age adopted Constant score, DASH and visual analogue scores were used as outcome measures. RESULTS: A total of 92 patients were enrolled in the study. However, 29 patients were excluded due to loss to follow-up and death. Ultimately, 63 patients were available for final follow-up and data analysis. The mean duration of follow-up was 22 months (range 16–48 months). On average at 1 year, all fractures had united. The mean weighted Constant score was 84.2 % and the median disabilities of the arm, shoulder and hand (DASH) score was 26, the range of elevation was 115 and range of abduction was 97. The head shaft angle was 130, and pain visual analogue was 1.6. We found that 5 of the 63 patients (8 %) demonstrated complications. Two patients (3 %) displayed secondary displacement and require device removal. Two patients (3 %) had impingement due to prominent metal work, and one patient had a superficial wound infection which was treated with a course of antibiotics. CONCLUSION: Our study shows excellent results with new locking blade nail for displaced proximal humerus fractures. We think the locking blade nail offers stiff triangular fixation of the head fragment and support of the medial calcar region to prevent secondary varus collapse. LEVEL OF EVIDENCE: III
Autism as a disorder of neural information processing: directions for research and targets for therapy
The broad variation in phenotypes and severities within autism spectrum disorders suggests the involvement of multiple predisposing factors, interacting in complex ways with normal developmental courses and gradients. Identification of these factors, and the common developmental path into which theyfeed, is hampered bythe large degrees of convergence from causal factors to altered brain development, and divergence from abnormal brain development into altered cognition and behaviour. Genetic, neurochemical, neuroimaging and behavioural findings on autism, as well as studies of normal development and of genetic syndromes that share symptoms with autism, offer hypotheses as to the nature of causal factors and their possible effects on the structure and dynamics of neural systems. Such alterations in neural properties may in turn perturb activity-dependent development, giving rise to a complex behavioural syndrome many steps removed from the root causes. Animal models based on genetic, neurochemical, neurophysiological, and behavioural manipulations offer the possibility of exploring these developmental processes in detail, as do human studies addressing endophenotypes beyond the diagnosis itself
A Simple and Effective Method for Construction of Escherichia coli Strains Proficient for Genome Engineering
Multiplex genome engineering is a standalone recombineering tool for large-scale programming and accelerated evolution of cells. However, this advanced genome engineering technique has been limited to use in selected bacterial strains. We developed a simple and effective strain-independent method for effective genome engineering in Escherichia coli. The method involves introducing a suicide plasmid carrying the l Red recombination system into the mutS gene. The suicide plasmid can be excised from the chromosome via selection in the absence of antibiotics, thus allowing transient inactivation of the mismatch repair system during genome engineering. In addition, we developed another suicide plasmid that enables integration of large DNA fragments into the lacZ genomic locus. These features enable this system to be applied in the exploitation of the benefits of genome engineering in synthetic biology, as well as the metabolic engineering of different strains of E. coli.open7
A Toolkit and Robust Pipeline for the Generation of Fosmid-Based Reporter Genes in C. elegans
Engineering fluorescent proteins into large genomic clones, contained within BACs or fosmid vectors, is a tool to visualize and study spatiotemporal gene expression patterns in transgenic animals. Because these reporters cover large genomic regions, they most likely capture all cis-regulatory information and can therefore be expected to recapitulate all aspects of endogenous gene expression. Inserting tags at the target gene locus contained within genomic clones by homologous recombination (“recombineering”) represents the most straightforward method to generate these reporters. In this methodology paper, we describe a simple and robust pipeline for recombineering of fosmids, which we apply to generate reporter constructs in the nematode C. elegans, whose genome is almost entirely covered in an available fosmid library. We have generated a toolkit that allows for insertion of fluorescent proteins (GFP, YFP, CFP, VENUS, mCherry) and affinity tags at specific target sites within fosmid clones in a virtually seamless manner. Our new pipeline is less complex and, in our hands, works more robustly than previously described recombineering strategies to generate reporter fusions for C. elegans expression studies. Furthermore, our toolkit provides a novel recombineering cassette which inserts a SL2-spliced intercistronic region between the gene of interest and the fluorescent protein, thus creating a reporter controlled by all 5′ and 3′ cis-acting regulatory elements of the examined gene without the direct translational fusion between the two. With this configuration, the onset of expression and tissue specificity of secreted, sub-cellular compartmentalized or short-lived gene products can be easily detected. We describe other applications of fosmid recombineering as well. The simplicity, speed and robustness of the recombineering pipeline described here should prompt the routine use of this strategy for expression studies in C. elegans
Tight Regulation of the intS Gene of the KplE1 Prophage: A New Paradigm for Integrase Gene Regulation
Temperate phages have the ability to maintain their genome in their host, a process called lysogeny. For most, passive replication of the phage genome relies on integration into the host's chromosome and becoming a prophage. Prophages remain silent in the absence of stress and replicate passively within their host genome. However, when stressful conditions occur, a prophage excises itself and resumes the viral cycle. Integration and excision of phage genomes are mediated by regulated site-specific recombination catalyzed by tyrosine and serine recombinases. In the KplE1 prophage, site-specific recombination is mediated by the IntS integrase and the TorI recombination directionality factor (RDF). We previously described a sub-family of temperate phages that is characterized by an unusual organization of the recombination module. Consequently, the attL recombination region overlaps with the integrase promoter, and the integrase and RDF genes do not share a common activated promoter upon lytic induction as in the lambda prophage. In this study, we show that the intS gene is tightly regulated by its own product as well as by the TorI RDF protein. In silico analysis revealed that overlap of the attL region with the integrase promoter is widely encountered in prophages present in prokaryotic genomes, suggesting a general occurrence of negatively autoregulated integrase genes. The prediction that these integrase genes are negatively autoregulated was biologically assessed by studying the regulation of several integrase genes from two different Escherichia coli strains. Our results suggest that the majority of tRNA-associated integrase genes in prokaryotic genomes could be autoregulated and that this might be correlated with the recombination efficiency as in KplE1. The consequences of this unprecedented regulation for excisive recombination are discussed
Recombination Phenotypes of Escherichia coli greA Mutants
<p>Abstract</p> <p>Background</p> <p>The elongation factor GreA binds to RNA polymerase and modulates transcriptional pausing. Some recent research suggests that the primary role of GreA may not be to regulate gene expression, but rather, to promote the progression of replication forks which collide with RNA polymerase, and which might otherwise collapse. Replication fork collapse is known to generate dsDNA breaks, which can be recombinogenic. It follows that GreA malfunction could have consequences affecting homologous recombination.</p> <p>Results</p> <p><it>Escherichia coli </it>mutants bearing substitutions of the active site acidic residues of the transcription elongation factor GreA, D41N and E44K, were isolated as suppressors of growth inhibition by a toxic variant of the bacteriophage lambda Red-beta recombination protein. These mutants, as well as a D41A <it>greA </it>mutant and a <it>greA </it>deletion, were tested for proficiency in recombination events. The mutations were found to increase the efficiency of RecA-RecBCD-mediated and RecA-Red-mediated recombination, which are replication-independent, and to decrease the efficiency of replication-dependent Red-mediated recombination.</p> <p>Conclusion</p> <p>These observations provide new evidence for a role of GreA in resolving conflicts between replication and transcription.</p
DNA Adenine Methylation Is Required to Replicate Both Vibrio cholerae Chromosomes Once per Cell Cycle
DNA adenine methylation is widely used to control many DNA transactions, including replication. In Escherichia coli, methylation serves to silence newly synthesized (hemimethylated) sister origins. SeqA, a protein that binds to hemimethylated DNA, mediates the silencing, and this is necessary to restrict replication to once per cell cycle. The methylation, however, is not essential for replication initiation per se but appeared so when the origins (oriI and oriII) of the two Vibrio cholerae chromosomes were used to drive plasmid replication in E. coli. Here we show that, as in the case of E. coli, methylation is not essential for oriI when it drives chromosomal replication and is needed for once-per-cell-cycle replication in a SeqA-dependent fashion. We found that oriII also needs SeqA for once-per-cell-cycle replication and, additionally, full methylation for efficient initiator binding. The requirement for initiator binding might suffice to make methylation an essential function in V. cholerae. The structure of oriII suggests that it originated from a plasmid, but unlike plasmids, oriII makes use of methylation for once-per-cell-cycle replication, the norm for chromosomal but not plasmid replication
- …