16 research outputs found

    Leaf nitrogen determination using non-destructive techniques–A review

    Full text link
    © 2017 Taylor & Francis Group, LLC. The optimisation of plant nitrogen-use-efficiency (NUE) has a direct impact on increasing crop production by optimising use of nitrogen fertiliser. Moreover, it protects environment from negative effects of nitrate leaching and nitrous oxide production. Accordingly, nitrogen (N) management in agriculture systems has been major focus of many researchers. Improvement of NUE can be achieved through several methods including more accurate measurement of foliar N contents of crops during different growth phases. There are two types of methods to diagnose foliar N status: destructive and non-destructive. Destructive methods are expensive and time-consuming, as they require tissue sampling and subsequent laboratory analysis. Thus, many farmers find destructive methods to be less attractive. Non-destructive methods are rapid and less expensive but are usually less accurate. Accordingly, improving the accuracy of non-destructive N estimations has become a common goal of many researchers, and various methods varying in complexity and optimality have been proposed for this purpose. This paper reviews various commonly used non-destructive methods for estimating foliar N status of plants

    Agave: A promising feedstock for biofuels in the water-energy-food-environment (WEFE) nexus

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordThe aim of this study was to conduct the first comprehensive life cycle assessment and economic analysis on ethanol produced from agave. Compositional and field data from a field experiment in Queensland, Australia was used. Our study shows that ethanol yields from agave (7414 L/ha/year) are comparable to Brazilian sugarcane (9900/L/ha/year) and higher than US corn ethanol (3800/L/ha/year). Furthermore, agave outperforms current first generation biofuel crops in water-related impacts, including Freshwater Eutrophication (96% lower than corn and 88% lower than sugarcane), Marine Ecotoxicity (59% lower than corn and 53% lower than sugarcane) and Water Consumption (46% lower than corn and 69% lower than sugarcane). The life cycle fossil energy use (Fossil Resource Scarcity) for agave is 58% lower than corn and 6% higher than sugarcane. The Global Warming impact for agave is also 62% and 30% lower than that of corn and sugarcane, respectively. Although its Land Use impact, measured by land occupied per unit ethanol output, is 98% higher than corn and 2% higher than sugarcane, agave can be grown on arid land that is not suitable for food crops. The economic analysis suggests that first generation ethanol production from agave is not commercially viable without government support. Overall, the results show that agave is promising for biofuel production in the water-energy-food-environment context.Engineering and Physical Sciences Research Council (EPSRC)Natural Environment Research Council (NERC

    Using Polyanionic Heparin Mimetics for the treatment of COPD

    Get PDF
    Poster Presentation - Theme 1: Cell biologyCOPD patients suffer from sustained inflammation leading to airway damage and deteriorating lung function caused by unopposed protease activity resulting from a1-antitrypsin resistant supramolecular complexes of neutrophil elastase and shed syndecan-1 in the airway. It was further shown that the action of the GAG digesting enzyme heparanase facilitates syndecan-1 shedding ...postprin

    Life cycle energy and greenhouse gas analysis for agave-derived bioethanol

    No full text
    The sustainability of large-scale biofuel production has recently been called into question in view of mounting concerns over the associated impact on land and water resources. As the most predominant biofuel today, ethanol produced from food crops such as corn in the US has been frequently criticised. Ethanol derived from cellulosic feedstocks is likely to overcome some of these drawbacks, but the production technology is yet to be commercialised. Sugarcane ethanol is the most efficient option in the short term, but its success in Brazil is difficult to replicate elsewhere. Agaves are attracting attention as potential ethanol feedstocks because of their many favourable characteristics such as high productivities and sugar content and their ability to grow in naturally water-limited environments. Here, we present the first life cycle energy and greenhouse gas (GHG) analysis for agave-derived ethanol. The results suggest that ethanol derived from agave is likely to be superior, or at least comparable, to that from corn, switchgrass and sugarcane in terms of energy and GHG balances, as well as in ethanol output and net GHG offset per unit land area. Our analysis highlights the promising opportunities for bioenergy production from agaves in arid or semi-arid regions with minimum pressure on food production and water resources. © 2011 The Royal Society of Chemistry

    Life cycle energy and greenhouse gas analysis for agave-derived bioethanol

    No full text
    The sustainability of large-scale biofuel production has recently been called into question in view of mounting concerns over the associated impact on land and water resources. As the most predominant biofuel today, ethanol produced from food crops such as corn in the US has been frequently criticised. Ethanol derived from cellulosic feedstocks is likely to overcome some of these drawbacks, but the production technology is yet to be commercialised. Sugarcane ethanol is the most efficient option in the short term, but its success in Brazil is difficult to replicate elsewhere. Agaves are attracting attention as potential ethanol feedstocks because of their many favourable characteristics such as high productivities and sugar content and their ability to grow in naturally water-limited environments. Here, we present the first life cycle energy and greenhouse gas (GHG) analysis for agave-derived ethanol. The results suggest that ethanol derived from agave is likely to be superior, or at least comparable, to that from corn, switchgrass and sugarcane in terms of energy and GHG balances, as well as in ethanol output and net GHG offset per unit land area. Our analysis highlights the promising opportunities for bioenergy production from agaves in arid or semi-arid regions with minimum pressure on food production and water resources. © 2011 The Royal Society of Chemistry
    corecore