488 research outputs found

    Mid-Upper Arm Circumference based Nutrition Programming: evidence for a new approach in regions with high burden of Acute Malnutrition

    Get PDF
    In therapeutic feeding programs (TFP), mid-upper arm circumference (MUAC) shows advantages over weight-for-height Z score (WHZ) and is recommended by the World Health Organization (WHO) as an independent criterion for screening children 6-59 months old. Here we report outcomes and treatment response from a TFP using MUAC ≤118 mm or oedema as sole admission criteria for severe acute malnutrition (SAM)

    A study of lymph node ratio in stage IV colorectal cancer

    Get PDF
    which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background: The finding of metastasis in colorectal cancer, stage IV disease, has a major impact on prognosis and treatment strategy. Known important factors include the extent of the metastasis and the patients ' performance status. The lymph node factors are of known importance in earlier cancer stages but less described in metastatic disease. The aim of the study was to evaluate lymph node status and ratio as prognostic markers in stage IV colorectal cancer. Methods: The study was retrospective and assessing all patients operated, with bowel resection, for an initial stage IV colorectal cancer during 1999–2003 (n = 136). Basic demographic data as well as given treatment was assessed. The Lymph node ratio (LNR), the quota between the number of lymph node metastasis and assessed lymph nodes, was calculated. LNR groups were created by ratio thirds, 3 equally sized groups. The analysis was made by LNR group and by eligibility for chemotherapy with cancer specific survival as outcome parameter. Results: The median survival (CSS) for the entire group was 431 days with great variability. For the patients eligible for chemotherapy it ranged from 791 days in LNR-group 1 to 433 days for th

    Mussel-Inspired Anisotropic Nanocellulose and Silver Nanoparticle Composite with Improved Mechanical Properties, Electrical Conductivity and Antibacterial Activity

    Get PDF
    Materials for wearable devices, tissue engineering and bio-sensing applications require both antibacterial activity to prevent bacterial infection and biofilm formation, and electrical conductivity to electric signals inside and outside of the human body. Recently, cellulose nanofibers have been utilized for various applications but cellulose itself has neither antibacterial activity nor conductivity. Here, an antibacterial and electrically conductive composite was formed by generating catechol mediated silver nanoparticles (AgNPs) on the surface of cellulose nanofibers. The chemically immobilized catechol moiety on the nanofibrous cellulose network reduced Ag+ to form AgNPs on the cellulose nanofiber. The AgNPs cellulose composite showed excellent antibacterial efficacy against both Gram-positive and Gram-negative bacteria. In addition, the catechol conjugation and the addition of AgNP induced anisotropic self-alignment of the cellulose nanofibers which enhances electrical and mechanical properties of the composite. Therefore, the composite containing AgNPs and anisotropic aligned the cellulose nanofiber may be useful for biomedical applications.open11128sciescopu

    The generalized Hamiltonian model for the shafting transient analysis of the hydro turbine generating sets.

    Get PDF
    yesTraditional rotor dynamics mainly focuses on the steady- state behavior of the rotor and shafting. However, for systems such as hydro turbine generating sets (HTGS) where the control and regulation is frequently applied, the shafting safety and stabilization in transient state is then a key factor. The shafting transient state inevitably involves multiparameter domain, multifield coupling, and coupling dynamics. In this paper, the relative value form of the Lagrange function and its equations have been established by defining the base value system of the shafting. Takingthe rotation angle and the angular speed of the shafting as a link, the shafting lateral vibration and generator equations are integrated into the framework of generalized Hamiltonian system. The generalized Hamiltonian control model is thus established. To make the model more general, additional forces of the shafting are taken as the input excitation in proposed model. The control system of the HTGS can be easily connected with the shafting model to form the whole simulation system of the HTGS. It is expected that this study will build a foundation for the coupling dynamics theory using the generalized Hamiltonian theory to investigate coupling dynamic mechanism among the shafting vibration, transient of hydro turbine generating sets, and additional forces of the shafting.National Natural Science Foundation of China under Grant Nos. 51179079 and 5083900

    On-chip Single Nanoparticle Detection and Sizing by Mode Splitting in an Ultra-high-Q Microresonator

    Full text link
    The ability to detect and size individual nanoparticles with high resolution is crucial to understanding behaviours of single particles and effectively using their strong size-dependent properties to develop innovative products. We report real-time, in-situ detection and sizing of single nanoparticles, down to 30 nm in radius, using mode-splitting in a monolithic ultra-high-Q whispering-gallery-mode (WGM) microtoroid resonator. Particle binding splits a WGM into two spectrally shifted resonance modes, forming a self-referenced detection scheme. This technique provides superior noise suppression and enables extracting accurate size information in a single-shot measurement. Our method requires neither labelling of the particles nor apriori information on their presence in the medium, providing an effective platform to study nanoparticles at single particle resolution.Comment: 23 pages, 8 figure

    Magnetic Anisotropic Energy Gap and Strain Effect in Au Nanoparticles

    Get PDF
    We report on the observation of the size effect of thermal magnetization in Au nanoparticles. The thermal deviation of the saturation magnetization departs substantially from that predicted by the Bloch T3/2-law, indicating the existence of magnetic anisotropic energy. The results may be understood using the uniaxial anisotropy Heisenberg model, in which the surface atoms give rise to polarized moments while the magnetic anisotropic energy decreases as the size of the Au nanoparticles is reduced. There is a significant maximum magnetic anisotropic energy found for the 6 nm Au nanoparticles, which is associated with the deviation of the lattice constant due to magnetocrystalline anisotropy

    Black tea extract prevents lipopolysaccharide-induced NF-κB signaling and attenuates dextran sulfate sodium-induced experimental colitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Black tea has been shown to elicit anti-oxidant, anti-carcinogenic, anti-inflammatory and anti-mutagenic properties. In this study, we investigated the impact of black tea extract (BTE) on lipopolysaccharide (LPS)-induced NF-κB signaling in bone marrow derived-macrophages (BMM) and determined the therapeutic efficacy of this extract on colon inflammation.</p> <p>Methods</p> <p>The effect of BTE on LPS-induced NF-κB signaling and pro-inflammatory gene expression was evaluated by RT-PCR, Western blotting, immunofluorescence and electrophoretic mobility shift assay (EMSA). The <it>in vivo </it>efficacy of BTE was assessed in mice with 3% dextran sulfate sodium (DSS)-induced colitis. The severity of colitis was measured by weight loss, colon length and histologic scores.</p> <p>Results</p> <p>LPS-induced IL-12p40, IL-23p19, IL-6 and IL-1β mRNA expressions were inhibited by BTE. LPS-induced IκBα phosphorylation/degradation and nuclear translocation of NF-κB/p65 were blocked by BTE. BTE treatment blocked LPS-induced DNA-binding activity of NF-κB. BTE-fed, DSS-exposed mice showed the less weight loss, longer colon length and lower histologic score compared to control diet-fed, DSS-exposed mice. DSS-induced IκBα phosphorylation/degradation and phosphorylation of NF-κB/p65 were blocked by BTE. An increase of cleaved caspase-3 and poly (ADP-ribose) polymerase (PARP) in DSS-exposed mice was blocked by BTE.</p> <p>Conclusions</p> <p>These results indicate that BTE attenuates colon inflammation through the blockage of NF-κB signaling and apoptosis in DSS-induced experimental colitis model.</p

    The p.V37I Exclusive Genotype Of GJB2: A Genetic Risk-Indicator of Postnatal Permanent Childhood Hearing Impairment

    Get PDF
    Postnatal permanent childhood hearing impairment (PCHI) is frequent (0.25%–0.99%) and difficult to detect in the early stage, which may impede the speech, language and cognitive development of affected children. Genetic tests of common variants associated with postnatal PCHI in newborns may provide an efficient way to identify those at risk. In this study, we detected a strong association of the p.V37I exclusive genotype of GJB2 with postnatal PCHI in Chinese Hans (P = 1.4×10−10; OR 62.92, 95% CI 21.27–186.12). This common genotype in Eastern Asians was present in a substantial percentage (20%) of postnatal PCHI subjects, and its prevalence was significantly increased in normal-hearing newborns who failed at least one newborn hearing screen. Our results indicated that the p.V37I exclusive genotype of GJB2 may cause subclinical hearing impairment at birth and increases risk for postnatal PCHI. Genetic testing of GJB2 in East Asian newborns will facilitate prompt detection and intervention of postnatal PCHI

    A novel tumor suppressor gene ECRG4 interacts directly with TMPRSS11A (ECRG1) to inhibit cancer cell growth in esophageal carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The esophageal carcinoma related gene 4 (ECRG4) was initially identified and cloned from human normal esophageal epithelium in our laboratory (GenBank accession no.<ext-link ext-link-id="AF325503" ext-link-type="gen">AF325503</ext-link>). ECRG4 has been described as a novel tumor suppressor gene associated with prognosis in esophageal squamous cell carcinoma (ESCC).</p> <p>Methods</p> <p>In this study, binding affinity assay in vitro and co-immunoprecipitation experiment in vivo were utilized to verify the physical interaction between ECRG4 and transmembrane protease, serine 11A (TMPRSS11A, also known as ECRG1, GenBank accession no. <ext-link ext-link-id="AF 071882" ext-link-type="gen">AF 071882</ext-link>). Then, p21 protein expression, cell cycle and cell proliferation regulations were examined after ECRG4 and ECRG1 co-transfection in ESCC cells.</p> <p>Results</p> <p>We revealed for the first time that ECRG4 interacted directly with ECRG1 to inhibit cancer cell proliferation and induce cell cycle G1 phase block in ESCC. Binding affinity and co-immunoprecipitation assays demonstrated that ECRG4 interacted directly with ECRG1 in ESCC cells. Furthermore, the ECRG4 and ECRG1 co-expression remarkably upregulatd p21 protein level by Western blot (P < 0.001), induced cell cycle G1 phase block by flow cytometric analysis (P < 0.001) and suppressed cell proliferation by MTT and BrdU assay (both P < 0.01) in ESCC cells.</p> <p>Conclusions</p> <p>ECRG4 interacts directly with ECRG1 to upregulate p21 protein expression, induce cell cycle G1 phase block and inhibit cancer cells proliferation in ESCC.</p
    corecore