69 research outputs found

    Influence of 1α, 25-dihydroxyvitamin D3 [1, 25(OH)2D3] on the expression of Sox 9 and the transient receptor potential vanilloid 5/6 ion channels in equine articular chondrocytes

    Get PDF
    Background Sox 9 is a major marker of chondrocyte differentiation. When chondrocytes are cultured in vitro they progressively de-differentiate and this is associated with a decline in Sox 9 expression. The active form of vitamin D, 1, 25 (OH)2D3 has been shown to be protective of cartilage in both humans and animals. In this study equine articular chondrocytes were grown in culture and the effects of 1, 25 (OH)2D3 upon Sox 9 expression examined. The expression of the transient receptor potential vanilloid (TRPV) ion channels 5 and 6 in equine chondrocytes in vitro, we have previously shown, is inversely correlated with de-differentiation. The expression of these channels in response to 1, 25 (OH)2D3 administration was therefore also examined. Results The active form of vitamin D (1, 25 (OH)2D3) when administered to cultured equine chondrocytes at two different concentrations significantly increased the expression of Sox 9 at both. In contrast 1, 25 (OH)2D3 had no significant effect upon the expression of either TRPV 5 or 6 at either the protein or the mRNA level. Conclusions The increased expression of Sox 9, in equine articular chondrocytes in vitro, in response to the active form of vitamin D suggests that this compound could be utilized to inhibit the progressive de-differentiation that is normally observed in these cells. It is also supportive of previous studies indicating that 1α, 25-dihydroxyvitamin D3 can have a protective effect upon cartilage in animals in vivo. The previously observed correlation between the degree of differentiation and the expression levels of TRPV 5/6 had suggested that these ion channels may have a direct involvement in, or be modulated by, the differentiation process in vitro. The data in the present study do not support this

    Expression of SPIG1 Reveals Development of a Retinal Ganglion Cell Subtype Projecting to the Medial Terminal Nucleus in the Mouse

    Get PDF
    Visual information is transmitted to the brain by roughly a dozen distinct types of retinal ganglion cells (RGCs) defined by a characteristic morphology, physiology, and central projections. However, our understanding about how these parallel pathways develop is still in its infancy, because few molecular markers corresponding to individual RGC types are available. Previously, we reported a secretory protein, SPIG1 (clone name; D/Bsp120I #1), preferentially expressed in the dorsal region in the developing chick retina. Here, we generated knock-in mice to visualize SPIG1-expressing cells with green fluorescent protein. We found that the mouse retina is subdivided into two distinct domains for SPIG1 expression and SPIG1 effectively marks a unique subtype of the retinal ganglion cells during the neonatal period. SPIG1-positive RGCs in the dorsotemporal domain project to the dorsal lateral geniculate nucleus (dLGN), superior colliculus, and accessory optic system (AOS). In contrast, in the remaining region, here named the pan-ventronasal domain, SPIG1-positive cells form a regular mosaic and project exclusively to the medial terminal nucleus (MTN) of the AOS that mediates the optokinetic nystagmus as early as P1. Their dendrites costratify with ON cholinergic amacrine strata in the inner plexiform layer as early as P3. These findings suggest that these SPIG1-positive cells are the ON direction selective ganglion cells (DSGCs). Moreover, the MTN-projecting cells in the pan-ventronasal domain are apparently composed of two distinct but interdependent regular mosaics depending on the presence or absence of SPIG1, indicating that they comprise two functionally distinct subtypes of the ON DSGCs. The formation of the regular mosaic appears to be commenced at the end of the prenatal stage and completed through the peak period of the cell death at P6. SPIG1 will thus serve as a useful molecular marker for future studies on the development and function of ON DSGCs

    Long-Term Cold Acclimation Extends Survival Time at 0°C and Modifies the Metabolomic Profiles of the Larvae of the Fruit Fly Drosophila melanogaster

    Get PDF
    Drosophila melanogaster is a chill-susceptible insect. Previous studies on this fly focused on acute direct chilling injury during cold shock and showed that lower lethal temperature (LLT, approximately -5°C) exhibits relatively low plasticity and that acclimations, both rapid cold hardening (RCH) and long-term cold acclimation, shift the LLT by only a few degrees at the maximum.We found that long-term cold acclimation considerably improved cold tolerance in fully grown third-instar larvae of D. melanogaster. A comparison of the larvae acclimated at constant 25°C with those acclimated at constant 15°C followed by constant 6°C for 2 d (15°C→6°C) showed that long-term cold acclimation extended the lethal time for 50% of the population (Lt(50)) during exposure to constant 0°C as much as 630-fold (from 0.137 h to 86.658 h). Such marked physiological plasticity in Lt(50) (in contrast to LLT) suggested that chronic indirect chilling injury at 0°C differs from that caused by cold shock. Long-term cold acclimation modified the metabolomic profiles of the larvae. Accumulations of proline (up to 17.7 mM) and trehalose (up to 36.5 mM) were the two most prominent responses. In addition, restructuring of the glycerophospholipid composition of biological membranes was observed. The relative proportion of glycerophosphoethanolamines (especially those with linoleic acid at the sn-2 position) increased at the expense of glycerophosphocholines.Third-instar larvae of D. melanogaster improved their cold tolerance in response to long-term cold acclimation and showed metabolic potential for the accumulation of proline and trehalose and for membrane restructuring

    Chloroplast genomes: diversity, evolution, and applications in genetic engineering

    Get PDF
    corecore