50 research outputs found

    Expression of chemokines on the surface of different human endothelia

    Get PDF
    Expression of chemokines at the endothelial surface depends on their rate of synthesis, the capacity of the endothelium to bind chemokines and the rate of clearance from the surface. The aim of this study was to establish how these factors depend on the chemokine and the tissue of origin of the endothelium. Human lung and dermal microvascular endothelium, saphenous and umbilical vein endothelium, and a bone marrow endothelial line were assayed in vitro. Chemokine expression, localization and transport was measured by immunoassay and confocal microscopy. All endothelia bound CCL3 (MIP-1), CCL5 (RANTES) and CXCL10 (IP-10). CCL3 and CCL5 bound at high levels, and CXCL10 bound less strongly. However, the profile of chemokine expression varied between endothelia, and different chemokines were shown to bind to the endothelial surface by distinct mechanisms. The half-life of CCL3 and CCL5 at the cell surface was approximately 30 min and chemokines were cleared primarily by endocytosis into caveolae. Endothelia from different tissues synthesize distinctive sets of chemokines, but the profile of surface-expressed chemokines also depends on the distinctive characteristics of each endothelia. These two mechanisms may contribute to the differential recruitment of leucocyte subsets to different tissues

    Brain endothelial miR-146a negatively modulates T-cell adhesion through repressing multiple targets to inhibit NF-kappa B activation

    Get PDF
    Pro-inflammatory cytokine-induced activation of nuclear factor, NF-κB has an important role in leukocyte adhesion to, and subsequent migration across, brain endothelial cells (BECs), which is crucial for the development of neuroinflammatory disorders such as multiple sclerosis (MS). In contrast, microRNA-146a (miR-146a) has emerged as an anti-inflammatory molecule by inhibiting NF-κB activity in various cell types, but its effect in BECs during neuroinflammation remains to be evaluated. Here, we show that miR-146a was upregulated in microvessels of MS-active lesions and the spinal cord of mice with experimental autoimmune encephalomyelitis. In vitro, TNFα and IFNγ treatment of human cerebral microvascular endothelial cells (hCMEC/D3) led to upregulation of miR-146a. Brain endothelial overexpression of miR-146a diminished, whereas knockdown of miR-146a augmented cytokine-stimulated adhesion of T cells to hCMEC/D3 cells, nuclear translocation of NF-κB, and expression of adhesion molecules in hCMEC/D3 cells. Furthermore, brain endothelial miR-146a modulates NF-κB activity upon cytokine activation through targeting two novel signaling transducers, RhoA and nuclear factor of activated T cells 5, as well as molecules previously identified, IL-1 receptor-associated kinase 1, and TNF receptor-associated factor 6. We propose brain endothelial miR-146a as an endogenous NF-κB inhibitor in BECs associated with decreased leukocyte adhesion during neuroinflammation. </p

    Transcriptional control of the multi-drug transporter ABCB1 by transcription factor Sp3 in different human tissues

    Get PDF
    The ATP-binding cassette (ABC) transporter ABCB1, encoded by the multidrug resistance gene MDR1, is expressed on brain microvascular endothelium and several types of epithelium, but not on endothelia outside the CNS. It is an essential component of the blood-brain barrier. The aim of this study was to identify cell-specific controls on the transcription of MDR1 in human brain endothelium. Reporter assays identified a region of 500bp around the transcription start site that was optimally active in brain endothelium. Chromatin immunoprecipitation identified Sp3 and TFIID associated with this region and EMSA (electrophoretic mobility shift assays) confirmed that Sp3 binds preferentially to an Sp-target site (GC-box) on the MDR1 promoter in brain endothelium. This result contrasts with findings in other cell types and with the colon carcinoma line Caco-2, in which Sp1 preferentially associates with the MDR1 promoter. Differences in MDR1 transcriptional control between brain endothelium and Caco-2 could not be explained by the relative abundance of Sp1:Sp3 nor by the ratio of Sp3 variants, because activating variants of Sp3 were present in both cell types. However differential binding of other transcription factors was also detected in two additional upstream regions of the MDR1 promoter. Identification of cell-specific controls on the transcription of MDR1 indicates that it may be possible to modulate multi-drug resistance on tumours, while leaving the blood brain barrier intact

    Molecular definition of group 1 innate lymphoid cells in the mouse uterus

    Get PDF
    Determining the function of uterine lymphocytes is challenging because of the rapidly changing nature of the organ in response to sex hormones and, during pregnancy, to the invading fetal trophoblast cells. Here we provide the first genome-wide transcriptome atlas of mouse uterine group 1 innate lymphoid cells (g1 ILCs) at mid-gestation. The composition of g1 ILCs fluctuates throughout reproductive life, with Eomes-veCD49a+ ILC1s dominating before puberty and specifically expanding in second pregnancies, when the expression of CXCR6, a marker of memory cells, is upregulated. Tissue-resident Eomes+CD49a+ NK cells (trNK), which resemble human uterine NK cells, are most abundant during early pregnancy, and showcase gene signatures of responsiveness to TGF-β, connections with trophoblast, epithelial, endothelial and smooth muscle cells, leucocytes, as well as extracellular matrix. Unexpectedly, trNK cells express genes involved in anaerobic glycolysis, lipid metabolism, iron transport, protein ubiquitination, and recognition of microbial molecular patterns. Conventional NK cells expand late in gestation and may engage in crosstalk with trNK cells involving IL-18 and IFN-γ. These results identify trNK cells as the cellular hub of uterine g1 ILCs at mid-gestation and mark CXCR6+ ILC1s as potential memory cells of pregnancy.This work was funded by a Wellcome Trust Investigator Award 200841/Z/16/Z, the Centre for Trophoblast Research (CTR), and the Cambridge NIHR BRC Cell Phenotyping Hub to FC, the Associazione Italiana Ricerca per la Ricerca sul Cancro (AIRC) - Special Project 5x1000 no. 9962, AIRC IG 2017 Id.19920 and AIRC 2014 Id. 15283 to LM, and Ministero della Salute RF-2013, GR-2013-02356568 to PV. IF was funded by a CTR PhD fellowship

    MiR-126 and miR-126* regulate shear-resistant firm leukocyte adhesion to human brain endothelium

    Get PDF
    Leukocyte adhesion to brain endothelial cells, the blood-brain barrier main component, is a critical step in the pathogenesis of neuroinflammatory diseases such as multiple sclerosis (MS). Leukocyte adhesion is mediated mainly by selectins, cell adhesion molecules and chemokines induced by pro-inflammatory cytokines such as TNFα and IFNγ, but the regulation of this process is not fully clear. This study investigated the regulation of firm leukocyte adhesion to human brain endothelium by two different brain endothelial microRNAs (miRs), miR-126 and miR-126*, that are downregulated by TNFα and IFNγ in a human brain endothelial cell line, hCMEC/D3. Using a leukocyte adhesion in vitro assay under shear forces mimicking blood flow, we observed that reduction of endothelial miR-126 and miR-126* enhanced firm monocyte and T cell adhesion to hCMEC/D3 cells, whereas their increased expression partially prevented THP1, Jurkat and primary MS patient-derived PBMC firm adhesion. Furthermore, we observed that miR-126* and miR-126 downregulation increased E-selectin and VCAM1, respectively, while miR-126 overexpression reduced VCAM1 and CCL2 expression by hCMEC/D3 cells, suggesting that these miRs regulate leukocyte adhesion by modulating the expression of adhesion-associated endothelial mRNA targets. Hence, human brain endothelial miR-126 and miR-126* could be used as a therapeutic tool to reduce leukocyte adhesion and thus reduce neuroinflammation

    A 'snip' in time: what is the best age to circumcise?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Circumcision is a common procedure, but regional and societal attitudes differ on whether there is a need for a male to be circumcised and, if so, at what age. This is an important issue for many parents, but also pediatricians, other doctors, policy makers, public health authorities, medical bodies, and males themselves.</p> <p>Discussion</p> <p>We show here that infancy is an optimal time for clinical circumcision because an infant's low mobility facilitates the use of local anesthesia, sutures are not required, healing is quick, cosmetic outcome is usually excellent, costs are minimal, and complications are uncommon. The benefits of infant circumcision include prevention of urinary tract infections (a cause of renal scarring), reduction in risk of inflammatory foreskin conditions such as balanoposthitis, foreskin injuries, phimosis and paraphimosis. When the boy later becomes sexually active he has substantial protection against risk of HIV and other viral sexually transmitted infections such as genital herpes and oncogenic human papillomavirus, as well as penile cancer. The risk of cervical cancer in his female partner(s) is also reduced. Circumcision in adolescence or adulthood may evoke a fear of pain, penile damage or reduced sexual pleasure, even though unfounded. Time off work or school will be needed, cost is much greater, as are risks of complications, healing is slower, and stitches or tissue glue must be used.</p> <p>Summary</p> <p>Infant circumcision is safe, simple, convenient and cost-effective. The available evidence strongly supports infancy as the optimal time for circumcision.</p

    Preservation of microvascular barrier function requires CD31 receptor-induced metabolic reprogramming

    Get PDF
    Endothelial barrier (EB) breaching is a frequent event during inflammation, and it is followed by the rapid recovery of microvascular integrity. The molecular mechanisms of EB recovery are poorly understood. Triggering of MHC molecules by migrating T-cells is a minimal signal capable of inducing endothelial contraction and transient microvascular leakage. Using this model, we show that EB recovery requires a CD31 receptor-induced, robust glycolytic response sustaining junction re-annealing. Mechanistically, this response involves src-homology phosphatase activation leading to Akt-mediated nuclear exclusion of FoxO1 and concomitant \u3b2-catenin translocation to the nucleus, collectively leading to cMyc transcription. CD31 signals also sustain mitochondrial respiration, however this pathway does not contribute to junction remodeling. We further show that pathologic microvascular leakage in CD31-deficient mice can be corrected by enhancing the glycolytic flux via pharmacological Akt or AMPK activation, thus providing a molecular platform for the therapeutic control of EB response

    Chloroplast genomes: diversity, evolution, and applications in genetic engineering

    Get PDF

    Expression and induction of p-glycoprotein-1 on cultured human brain endothelium

    No full text
    The ABC-transporter, p-glycoprotein-1 (pgp-1), is expressed on brain endothelium and is reported to be induced by several cytotoxic drugs, which are themselves substrates of pgp-1. Pgp-1 was increased on a human brain endothelial cell line (hCMEC/D3) after treatment with puromycin or verapamil. However, flow cytometry showed that the apparent upregulation caused by puromycin was not because of a global increase in expression levels, but selective cell death of a subpopulation of endothelium expressing the lowest levels of pgp-1. If a cytotoxic substrate of pgp-1 increases pgp-1 expression in vitro, it can easily be misinterpreted as a transcriptional activator of pgp-1
    corecore