3,539 research outputs found

    Are oxygen and sulfur atoms structurally equivalent in organic crystals?

    Get PDF
    New guidelines for the design of structurally equivalent molecular crystals were derived from structural analyses of new cocrystals and polymorphs of saccharin and thiosaccharin, aided by a computational study. The study shows that isostructural crystals may be obtained through an exchange of >C?O with >C?S in the molecular components of the solids, but only if the exchanged atom is not involved in hydrogen bonding

    Composite Right/Left-Handed Leaky-Wave Antennas for Wide-Angle Beam Scanning with Flexibly Chosen Frequency Range

    Full text link
    © 2019 IEEE. A composite right/left-handed (CRLH) leaky-wave antenna (LWA) can effectively scan the radiation beam from backward-to-forward direction. However, in most cases, a large range of frequency sweep is required to achieve a wide-angle beam scan, which could limit their applications. An in-depth study is conducted on an equivalent circuit model for a CRLH LWA unit cell to find the controlling parameters on the frequency sweeping range. A systematic design guideline is given for a CRLH LWA for a wide-angle beam scan in a flexibly chosen frequency range. It is shown that beam scanning by sweeping frequency in a target range can be achieved by systematically designing the unit cell parameters. To verify our approach, a novel CRLH unit cell is developed and used to design an LWA for a wide-angle beam scan in a narrow frequency range. Finally, the concept is validated through realization of the antenna and its measurement. The measured results show that the antenna prototype can scan its beam from -56° to +51° when frequency sweeps from 5.1 to 6.11 GHz (i.e., 18.02% of fractional bandwidth)

    Wide-Angle Wideband Frequency-Independent Beam-Scanning Leaky Wave Antenna

    Full text link
    © 2019 IEEE. Frequency-independent beam scanning leaky-wave antennas (LWAs) that can operate over a specific frequency band are highly desirable for future wireless systems. A composite right/left-handed (CRLH) LWA is developed in this paper that facilitates these functionalities. It utilizes two groups of varactor diodes to realize the frequency-independent beam scanning capability. The optimized reconfigurable CRLH LWA and its simple DC biasing network achieves a simulated frequency-independent beam that scans over 100° at each frequency point between 4.75 and 5.25 GHz. An antenna prototype was fabricated and tested. The measured results at 5.0 GHz confirm its simulated performance characteristics

    Polarization-Reconfigurable Leaky-Wave Antenna with Continuous Beam Scanning through Broadside

    Full text link
    © 2019 IEEE. A simple single-layer reconfigurable leaky-wave antenna (LWA) is presented that has polarization agility and beam-scanning functionality. This LWA system realizes a scanned beam that can be switched between all of its linear polarization (LP) and circular polarization (CP) states using only one dc biasing source. A slot-loaded substrate-integrated waveguide (SIW)-based LWA is first explored to attain CP performance with continuous beam scanning through broadside. This CP LWA realizes a measured CP performance with a 3 dB gain variance within 2.75-3.35 GHz for scan angles ranging from -28.6° to +31.5°. A row of shorted stubs is then incorporated into the CP LWA to obtain similar LP performance. Finally, by introducing p-i-n diodes into this LP LWA configuration to facilitate reconfigurable connections between the main patch and the shorted stubs, the radiated fields can be switched between all of its CP and LP states. The measured results of all three antennas confirm their simulated performance. It is demonstrated that the main beam of the polarization-reconfigurable LWA can be scanned from -31.5° to +17.1° with gain variations between 9.5 and 12.8 dBic in its CP state and from -34.3° to +20° with them between 7.8 and 11.7 dBi in its LP state

    Signal Propagation in Feedforward Neuronal Networks with Unreliable Synapses

    Full text link
    In this paper, we systematically investigate both the synfire propagation and firing rate propagation in feedforward neuronal network coupled in an all-to-all fashion. In contrast to most earlier work, where only reliable synaptic connections are considered, we mainly examine the effects of unreliable synapses on both types of neural activity propagation in this work. We first study networks composed of purely excitatory neurons. Our results show that both the successful transmission probability and excitatory synaptic strength largely influence the propagation of these two types of neural activities, and better tuning of these synaptic parameters makes the considered network support stable signal propagation. It is also found that noise has significant but different impacts on these two types of propagation. The additive Gaussian white noise has the tendency to reduce the precision of the synfire activity, whereas noise with appropriate intensity can enhance the performance of firing rate propagation. Further simulations indicate that the propagation dynamics of the considered neuronal network is not simply determined by the average amount of received neurotransmitter for each neuron in a time instant, but also largely influenced by the stochastic effect of neurotransmitter release. Second, we compare our results with those obtained in corresponding feedforward neuronal networks connected with reliable synapses but in a random coupling fashion. We confirm that some differences can be observed in these two different feedforward neuronal network models. Finally, we study the signal propagation in feedforward neuronal networks consisting of both excitatory and inhibitory neurons, and demonstrate that inhibition also plays an important role in signal propagation in the considered networks.Comment: 33pages, 16 figures; Journal of Computational Neuroscience (published

    Strategies used as spectroscopy of financial markets reveal new stylized facts

    Get PDF
    We propose a new set of stylized facts quantifying the structure of financial markets. The key idea is to study the combined structure of both investment strategies and prices in order to open a qualitatively new level of understanding of financial and economic markets. We study the detailed order flow on the Shenzhen Stock Exchange of China for the whole year of 2003. This enormous dataset allows us to compare (i) a closed national market (A-shares) with an international market (B-shares), (ii) individuals and institutions and (iii) real investors to random strategies with respect to timing that share otherwise all other characteristics. We find that more trading results in smaller net return due to trading frictions. We unveiled quantitative power laws with non-trivial exponents, that quantify the deterioration of performance with frequency and with holding period of the strategies used by investors. Random strategies are found to perform much better than real ones, both for winners and losers. Surprising large arbitrage opportunities exist, especially when using zero-intelligence strategies. This is a diagnostic of possible inefficiencies of these financial markets.Comment: 13 pages including 5 figures and 1 tabl

    Monoubiquitination of syntaxin 3 leads to retrieval from the basolateral plasma membrane and facilitates cargo recruitment to exosomes

    Get PDF
    Syntaxin 3 (Stx3), a SNARE protein located and functioning at the apical plasma membrane of epithelial cells, is required for epithelial polarity. A fraction of Stx3 is localized to late endosomes/lysosomes, although how it traffics there and its function in these organelles is unknown. Here we report that Stx3 undergoes monoubiquitination in a conserved polybasic domain. Stx3 present at the basolateral—but not the apical—plasma membrane is rapidly endocytosed, targeted to endosomes, internalized into intraluminal vesicles (ILVs), and excreted in exosomes. A nonubiquitinatable mutant of Stx3 (Stx3-5R) fails to enter this pathway and leads to the inability of the apical exosomal cargo protein GPRC5B to enter the ILV/exosomal pathway. This suggests that ubiquitination of Stx3 leads to removal from the basolateral membrane to achieve apical polarity, that Stx3 plays a role in the recruitment of cargo to exosomes, and that the Stx3-5R mutant acts as a dominant-negative inhibitor. Human cytomegalovirus (HCMV) acquires its membrane in an intracellular compartment and we show that Stx3-5R strongly reduces the number of excreted infectious viral particles. Altogether these results suggest that Stx3 functions in the transport of specific proteins to apical exosomes and that HCMV exploits this pathway for virion excretion

    Magnetism and its microscopic origin in iron-based high-temperature superconductors

    Full text link
    High-temperature superconductivity in the iron-based materials emerges from, or sometimes coexists with, their metallic or insulating parent compound states. This is surprising since these undoped states display dramatically different antiferromagnetic (AF) spin arrangements and Neˊ\rm \acute{e}el temperatures. Although there is general consensus that magnetic interactions are important for superconductivity, much is still unknown concerning the microscopic origin of the magnetic states. In this review, progress in this area is summarized, focusing on recent experimental and theoretical results and discussing their microscopic implications. It is concluded that the parent compounds are in a state that is more complex than implied by a simple Fermi surface nesting scenario, and a dual description including both itinerant and localized degrees of freedom is needed to properly describe these fascinating materials.Comment: 14 pages, 4 figures, Review article, accepted for publication in Nature Physic

    Artesunate potentiates antibiotics by inactivating heme-harbouring bacterial nitric oxide synthase and catalase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A current challenge of coping with bacterial infection is that bacterial pathogens are becoming less susceptible to or more tolerant of commonly used antibiotics. It is urgent to work out a practical solution to combat the multidrug resistant bacterial pathogens.</p> <p>Findings</p> <p>Oxidative stress-acclimatized bacteria thrive in rifampicin by generating antibiotic-detoxifying nitric oxide (NO), which can be repressed by artesunate or an inhibitor of nitric oxide synthase (NOS). Suppressed bacterial proliferation correlates with mitigated NO production upon the combined treatment of bacteria by artesunate with antibiotics. Detection of the heme-artesunate conjugate and accordingly declined activities of heme-harbouring bacterial NOS and catalase indicates that artesunate renders bacteria susceptible to antibiotics by alkylating the prosthetic heme group of hemo-enzymes.</p> <p>Conclusions</p> <p>By compromising NO-mediated protection from antibiotics and triggering harmful hydrogen peroxide burst, artesunate may serve as a promising antibiotic synergist for killing the multidrug resistant pathogenic bacteria.</p
    corecore