18 research outputs found

    Changing facial phenotype in Cohen syndrome:towards clues for an earlier diagnosis

    No full text
    <p>Cohen syndrome (CS) is a rare autosomal recessive condition caused by mutations and/or large rearrangements in the VPS13B gene. CS clinical features, including developmental delay, the typical facial gestalt, chorioretinal dystrophy (CRD) and neutropenia, are well described. CS diagnosis is generally raised after school age, when visual disturbances lead to CRD diagnosis and to VPS13B gene testing. This relatively late diagnosis precludes accurate genetic counselling. The aim of this study was to analyse the evolution of CS facial features in the early period of life, particularly before school age (6 years), to find clues for an earlier diagnosis. Photographs of 17 patients with molecularly confirmed CS were analysed, from birth to preschool age. By comparing their facial phenotype when growing, we show that there are no special facial characteristics before 1 year. However, between 2 and 6 years, CS children already share common facial features such as a short neck, a square face with micrognathia and full cheeks, a hypotonic facial appearance, epicanthic folds, long ears with an everted upper part of the auricle and/or a prominent lobe, a relatively short philtrum, a small and open mouth with downturned corners, a thick lower lip and abnormal eye shapes. These early transient facial features evolve to typical CS facial features with aging. These observations emphasize the importance of ophthalmological tests and neutrophil count in children in preschool age presenting with developmental delay, hypotonia and the facial features we described here, for an earlier CS diagnosis.</p>

    Insulin response dysregulation explains abnormal fat storage and increased risk of diabetes mellitus type 2 in Cohen Syndrome

    No full text
    Cohen Syndrome (CS) is a rare autosomal recessive disorder, with defective glycosylation secondary to mutations in the VPS13B gene, which encodes a protein of the Golgi apparatus. Besides congenital neutropenia, retinopathy and intellectual deficiency, CS patients are faced with truncal obesity. Metabolism investigations showed abnormal glucose tolerance tests and low HDL values in some patients, and these could be risk factors for the development of diabetes mellitus and/or cardiovascular complications. To understand the mechanisms involved in CS fat storage, we used two models of adipogenesis differentiation: (i) SGBS pre-adipocytes with VPS13B invalidation thanks to siRNA delivery and (ii) CS primary fibroblasts. In both models, VPS13B invalidation led to accelerated differentiation into fat cells, which was confirmed by the earlier and increased expression of specific adipogenic genes, consequent to the increased response of cells to insulin stimulation. At the end of the differentiation protocol, these fat cells exhibited decreased AKT2 phosphorylation after insulin stimulation, which suggests insulin resistance. This study, in association with the in-depth analysis of the metabolic status of the patients, thus allowed us to recommend appropriate nutritional education to prevent the occurrence of diabetes mellitus and to put forward recommendations for the follow-up of CS patients, in particular with regard to the development of metabolic syndrome. We also suggest replacing the term obesity by abnormal fat distribution in CS, which should reduce the number of inappropriate diagnoses in patients who are referred only on the basis of intellectual deficiency associated with obesity

    Cohen syndrome is associated with major glycosylation defects

    No full text
    International audienceCohen syndrome (CS) is a rare autosomal recessive disorder with multisytemic clinical features due to mutations in the VPS13B gene, which has recently been described encoding a mandatory membrane protein involved in Golgi integrity. As the Golgi complex is the place where glycosylation of newly synthesized proteins occurs, we hypothesized that VPS13B deficiency, responsible of Golgi apparatus disturbance, could lead to glycosylation defects and/or mysfunction of this organelle, and thus be a cause of the main clinical manifestations of CS. The glycosylation status of CS serum proteins showed a very unusual pattern of glycosylation characterized by a significant accumulation of agalactosylated fucosylated structures as well as asialylated fucosylated structures demonstrating a major defect of glycan maturation in CS. However, CS transferrin and α1-AT profiles, two liver-derived proteins, were normal. We also showed that intercellular cell adhesion molecule 1 and LAMP-2, two highly glycosylated cellular proteins, presented an altered migration profile on SDS–PAGE in peripheral blood mononuclear cells from CS patients. RNA interference against VPS13B confirmed these glycosylation defects. Experiments with Brefeldin A demonstrated that intracellular retrograde cell trafficking was normal in CS fibroblasts. Furthermore, early endosomes were almost absent in these cells and lysosomes were abnormally enlarged, suggesting a crucial role of VPS13B in endosomal–lysosomal trafficking. Our work provides evidence that CS is associated to a tissue-specific major defect of glycosylation and endosomal–lysosomal trafficking defect, suggesting that this could be a new key element to decipher the mechanisms of CS physiopathology

    Clinical whole-exome sequencing for the diagnosis of rare disorders with congenital anomalies and/or intellectual disability: substantial interest of prospective annual reanalysis

    No full text
    International audiencePurposeCongenital anomalies and intellectual disability (CA/ID) are a major diagnostic challenge in medical genetics—50% of patients still have no molecular diagnosis after a long and stressful diagnostic “odyssey.” Solo clinical whole-exome sequencing (WES) was applied in our genetics center to improve diagnosis in patients with CA/ID.MethodsThis retrospective study examined 416 consecutive tests performed over 3 years to demonstrate the effectiveness of periodically reanalyzing WES data. The raw data from each nonpositive test was reanalyzed at 12 months with the most recent pipeline and in the light of new data in the literature. The results of the reanalysis for patients enrolled in the third year are not yet available.ResultsOf the 416 patients included, data for 156 without a diagnosis were reanalyzed. We obtained 24 (15.4%) additional diagnoses: 12 through the usual diagnostic process (7 new publications, 4 initially misclassified, and 1 copy-number variant), and 12 through translational research by international data sharing. The final yield of positive results was 27.9% through a strict diagnostic approach, and 2.9% through an additional research strategy.ConclusionThis article highlights the effectiveness of periodically combining diagnostic reinterpretation of clinical WES data with translational research involving data sharing for candidate genes

    Reducing diagnostic turnaround times of exome sequencing for families requiring timely diagnoses

    No full text
    IF 2.137International audienceBACKGROUND AND OBJECTIVE:Whole-exome sequencing (WES) has now entered medical practice with powerful applications in the diagnosis of rare Mendelian disorders. Although the usefulness and cost-effectiveness of WES have been widely demonstrated, it is essential to reduce the diagnostic turnaround time to make WES a first-line procedure. Since 2011, the automation of laboratory procedures and advances in sequencing chemistry have made it possible to carry out diagnostic whole genome sequencing from the blood sample to molecular diagnosis of suspected genetic disorders within 50 h. Taking advantage of these advances, the main objective of the study was to improve turnaround times for sequencing results.METHODS:WES was proposed to 29 patients with severe undiagnosed disorders with developmental abnormalities and faced with medical situations requiring rapid diagnosis. Each family gave consent. The extracted DNA was sequenced on a NextSeq500 (Illumina) instrument. Data were analyzed following standard procedures. Variants were interpreted using in-house software. Each rare variant affecting protein sequences with clinical relevance was tested for familial segregation.RESULTS:The diagnostic rate was 45% (13/29), with a mean turnaround time of 40 days from reception of the specimen to delivery of results to the referring physician. Besides permitting genetic counseling, the rapid diagnosis for positive families led to two pre-natal diagnoses and two inclusions in clinical trials.CONCLUSIONS:This pilot study demonstrated the feasibility of rapid diagnostic WES in our primary genetics center. It reduced the diagnostic odyssey and helped provide support to families.Copyright © 2017 Elsevier Masson SAS. All rights reserved
    corecore