112 research outputs found

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic

    Border effects among Catalan dialects

    Get PDF
    In this study, we investigate which factors influence the linguistic distance of Catalan dialectal pronunciations from standard Catalan. We use pronunciations from three regions where the northwestern variety of the Catalan language is spoken (Catalonia, Aragon and Andorra). In contrast to Aragon, Catalan has an official status in both Catalonia and Andorra, which likely influences standardization. Because we are interested in the potentially large range of differences that standardization might promote, we examine 357 words in Catalan varieties and in particular their pronunciation distances with respect to the standard. In order to be sensitive to differences among the words, we fitted a generalized additive mixed-effects regression model to this data. This allows us to examine simultaneously the general (i.e. aggregate) patterns in pronunciation distance and to detect those words that diverge substantially from the general pattern. The results revealed higher pronunciation distances from standard Catalan in Aragon than in the other regions. Furthermore, speakers in Catalonia and Andorra, but not in Aragon, showed a clear standardization pattern, with younger speakers having dialectal pronunciations closer to the standard than older speakers. This clearly indicates the presence of a border effect within a single country with respect to word pronunciation distances. Since a great deal of scholarship focuses on single segment changes, we compare our analysis to the analysis of three segment changes that have been discussed in the literature on Catalan. This comparison revealed that the pattern observed at the word pronunciation level was supported by two of the three cases examined. As not all individual cases conform to the general pattern,

    Mammalian cell transfection: the present and the future

    Get PDF
    Transfection is a powerful analytical tool enabling study of the function of genes and gene products in cells. The transfection methods are broadly classified into three groups; biological, chemical, and physical. These methods have advanced to make it possible to deliver nucleic acids to specific subcellular regions of cells by use of a precisely controlled laser-microcope system. The combination of point-directed transfection and mRNA transfection is a new way of studying the function of genes and gene products. However, each method has its own advantages and disadvantages so the optimum method depends on experimental design and objective

    Immediate, but Not Delayed, Microsurgical Skull Reconstruction Exacerbates Brain Damage in Experimental Traumatic Brain Injury Model

    Get PDF
    Moderate to severe traumatic brain injury (TBI) often results in malformations to the skull. Aesthetic surgical maneuvers may offer normalized skull structure, but inconsistent surgical closure of the skull area accompanies TBI. We examined whether wound closure by replacement of skull flap and bone wax would allow aesthetic reconstruction of the TBI-induced skull damage without causing any detrimental effects to the cortical tissue. Adult male Sprague-Dawley rats were subjected to TBI using the controlled cortical impact (CCI) injury model. Immediately after the TBI surgery, animals were randomly assigned to skull flap replacement with or without bone wax or no bone reconstruction, then were euthanized at five days post-TBI for pathological analyses. The skull reconstruction provided normalized gross bone architecture, but 2,3,5-triphenyltetrazolium chloride and hematoxylin and eosin staining results revealed larger cortical damage in these animals compared to those that underwent no surgical maneuver at all. Brain swelling accompanied TBI, especially the severe model, that could have relieved the intracranial pressure in those animals with no skull reconstruction. In contrast, the immediate skull reconstruction produced an upregulation of the edema marker aquaporin-4 staining, which likely prevented the therapeutic benefits of brain swelling and resulted in larger cortical infarcts. Interestingly, TBI animals introduced to a delay in skull reconstruction (i.e., 2 days post-TBI) showed significantly reduced edema and infarcts compared to those exposed to immediate skull reconstruction. That immediate, but not delayed, skull reconstruction may exacerbate TBI-induced cortical tissue damage warrants a careful consideration of aesthetic repair of the skull in TBI

    Silkworm Coatomers and Their Role in Tube Expansion of Posterior Silkgland

    Get PDF
    Background: Coat protein complex I (COPI) vesicles, coated by seven coatomer subunits, are mainly responsible for Golgito-ER transport. Silkworm posterior silkgland (PSG), a highly differentiated secretory tissue, secretes fibroin for silk production, but many physiological processes in the PSG cells await further investigation. Methodology/Principal Findings: Here, to investigate the role of silkworm COPI, we cloned six silkworm COPI subunits (a,b,b9, d, e, and f-COP), determined their peak expression in day 2 in fifth-instar PSG, and visualized the localization of COPI, as a coat complex, with cis-Golgi. By dsRNA injection into silkworm larvae, we suppressed the expression of a-, b9- and c-COP, and demonstrated that COPI subunits were required for PSG tube expansion. Knockdown of a-COP disrupted the integrity of Golgi apparatus and led to a narrower glandular lumen of the PSG, suggesting that silkworm COPI is essential for PSG tube expansion. Conclusions/Significance: The initial characterization reveals the essential roles of silkworm COPI in PSG. Although silkworm COPI resembles the previously characterized coatomers in other organisms, some surprising findings require further investigation. Therefore, our results suggest the silkworm as a model for studying intracellular transport, and woul

    Children Use Statistics and Semantics in the Retreat from Overgeneralization

    Get PDF
    How do children learn to restrict their productivity and avoid ungrammatical utterances? The present study addresses this question by examining why some verbs are used with un- prefixation (e.g., unwrap) and others are not (e.g., *unsqueeze). Experiment 1 used a priming methodology to examine children's (3–4; 5–6) grammatical restrictions on verbal un- prefixation. To elicit production of un-prefixed verbs, test trials were preceded by a prime sentence, which described reversal actions with grammatical un- prefixed verbs (e.g., Marge folded her arms and then she unfolded them). Children then completed target sentences by describing cartoon reversal actions corresponding to (potentially) un- prefixed verbs. The younger age-group's production probability of verbs in un- form was negatively related to the frequency of the target verb in bare form (e.g., squeez/e/ed/es/ing), while the production probability of verbs in un- form for both age groups was negatively predicted by the frequency of synonyms to a verb's un- form (e.g., release/*unsqueeze). In Experiment 2, the same children rated the grammaticality of all verbs in un- form. The older age-group's grammaticality judgments were (a) positively predicted by the extent to which each verb was semantically consistent with a semantic “cryptotype” of meanings - where “cryptotype” refers to a covert category of overlapping, probabilistic meanings that are difficult to access - hypothesised to be shared by verbs which take un-, and (b) negatively predicted by the frequency of synonyms to a verb's un- form. Taken together, these experiments demonstrate that children as young as 4;0 employ pre-emption and entrenchment to restrict generalizations, and that use of a semantic cryptotype to guide judgments of overgeneralizations is also evident by age 6;0. Thus, even early developmental accounts of children's restriction of productivity must encompass a mechanism in which a verb's semantic and statistical properties interact

    The Bank of Standardized Stimuli (BOSS), a New Set of 480 Normative Photos of Objects to Be Used as Visual Stimuli in Cognitive Research

    Get PDF
    There are currently stimuli with published norms available to study several psychological aspects of language and visual cognitions. Norms represent valuable information that can be used as experimental variables or systematically controlled to limit their potential influence on another experimental manipulation. The present work proposes 480 photo stimuli that have been normalized for name, category, familiarity, visual complexity, object agreement, viewpoint agreement, and manipulability. Stimuli are also available in grayscale, blurred, scrambled, and line-drawn version. This set of objects, the Bank Of Standardized Stimuli (BOSS), was created specifically to meet the needs of scientists in cognition, vision and psycholinguistics who work with photo stimuli

    Immunolocalization of the short neuropeptide F receptor in queen brains and ovaries of the red imported fire ant (Solenopsis invicta Buren)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insect neuropeptides are involved in diverse physiological functions and can be released as neurotransmitters or neuromodulators acting within the central nervous system, and as circulating neurohormones in insect hemolymph. The insect short neuropeptide F (sNPF) peptides, related to the vertebrate neuropeptide Y (NPY) peptides, have been implicated in the regulation of food intake and body size, and play a gonadotropic role in the ovaries of some insect species. Recently the sNPF peptides were localized in the brain of larval and adult <it>Drosophila</it>. However, the location of the sNPF receptor, a G protein-coupled receptor (GPCR), has not yet been investigated in brains of any adult insect. To elucidate the sites of action of the sNPF peptide(s), the sNPF receptor tissue expression and cellular localization were analyzed in queens of the red imported fire ant, <it>Solenopsis invicta </it>Buren (Hymenoptera), an invasive social insect.</p> <p>Results</p> <p>In the queen brains and subesophageal ganglion about 164 cells distributed in distinctive cell clusters (C1-C9 and C12) or as individual cells (C10, C11) were immuno-positive for the sNPF receptor. Most of these neurons are located in or near important sensory neuropils including the mushroom bodies, the antennal lobes, the central complex, and in different parts of the protocerebrum, as well as in the subesophageal ganglion. The localization of the sNPF receptor broadly links the receptor signaling pathway with circuits regulating learning and feeding behaviors. In ovaries from mated queens, the detection of sNPF receptor signal at the posterior end of oocytes in mid-oogenesis stage suggests that the sNPF signaling pathway may regulate processes at the oocyte pole.</p> <p>Conclusions</p> <p>The analysis of sNPF receptor immunolocalization shows that the sNPF signaling cascade may be involved in diverse functions, and the sNPF peptide(s) may act in the brain as neurotransmitter(s) or neuromodulator(s), and in the ovaries as neurohormone(s). To our knowledge, this is the first report of the cellular localization of a sNPF receptor on the brain and ovaries of adult insects.</p
    corecore