21 research outputs found
Phylogeny and Classification of the Trapdoor Spider Genus Myrmekiaphila: An Integrative Approach to Evaluating Taxonomic Hypotheses
Background: Revised by Bond and Platnick in 2007, the trapdoor spider genus Myrmekiaphila comprises 11 species. Species delimitation and placement within one of three species groups was based on modifications of the male copulatory device. Because a phylogeny of the group was not available these species groups might not represent monophyletic lineages; species definitions likewise were untested hypotheses. The purpose of this study is to reconstruct the phylogeny of Myrmekiaphila species using molecular data to formally test the delimitation of species and species-groups. We seek to refine a set of established systematic hypotheses by integrating across molecular and morphological data sets. Methods and Findings: Phylogenetic analyses comprising Bayesian searches were conducted for a mtDNA matrix composed of contiguous 12S rRNA, tRNA-val, and 16S rRNA genes and a nuclear DNA matrix comprising the glutamyl and prolyl tRNA synthetase gene each consisting of 1348 and 481 bp, respectively. Separate analyses of the mitochondrial and nuclear genome data and a concatenated data set yield M. torreya and M. millerae paraphyletic with respect to M. coreyi and M. howelli and polyphyletic fluviatilis and foliata species groups. Conclusions: Despite the perception that molecular data present a solution to a crisis in taxonomy, studies like this demonstrate the efficacy of an approach that considers data from multiple sources. A DNA barcoding approach during the species discovery process would fail to recognize at least two species (M. coreyi and M. howelli) whereas a combine
Recommended from our members
The Dirac experiments - results and challenges
The 1997 international Dirac II Series held at Los Alamos National Laboratory involved low temperature electrical transport and optical experiments in magnetic fields exceeding 800%, produced by explosive flux compression using Russian MC-1 generators. An overview of the scientific and technical advances achieved in this Series is given, together with a strategy for future work in this challenging experimental environment. A significant outcome was achieved in transport studies of microfabricated thin-film YBCO structures with the magnetic field in the CuO plane. Using a GHz transmission line technique at an ambient temperature of 1.6 K, an onset of dissipation was observed at 150 T (a new upper bound for superconductivity in any material), with a saturation of resistivity at 240 T. Comparison with the Pauli limit expected at B=155 T in this material suggests that the critical field in this geometry is limited by spin paramagnetism. In preparation for a Diract III series, a systematic temperature-dependent transport study of YBCO using in-plane magnetic fields of 150 T generated by single-turn coils, at temperatures over the range 10-100 K, has been undertaken in collaboration with the Japanese Megagauss Laboratory. The objective is to map out the phase diagram for this geometry, which is expected to be significantly different than the Werthamer-Helfand-Hohenberg model, due to the presence of paramagnetic limiting. Nanofabricated magnetometers have also been developed in a UNSW-LANL collaboration for use in Dirac III for Fermi surface measurements of YBCO in megagauss fields, which are described
Progress in silicon-based quantum computing
C1 - Journal Articles RefereedWe review progress at the Australian Centre for Quantum Computer Technology towards the fabrication and demonstration of spin qubits and charge qubits based on phosphorus donor atoms embedded in intrinsic silicon. Fabrication is being pursued via two complementary pathways: a 'top-down' approach for near-term production of few-qubit demonstration devices and a 'bottom-up' approach for large-scale qubit arrays with sub-nanometre precision. The 'top-down' approach employs a low-energy (keV) ion beam to implant the phosphorus atoms. Single-atom control during implantation is achieved by monitoring on-chip detector electrodes, integrated within the device structure. In contrast, the 'bottom-up' approach uses scanning tunnelling microscope lithography and epitaxial silicon overgrowth to construct devices at an atomic scale. In both cases, surface electrodes control the qubit using voltage pulses, and dual single-electron transistors operating near the quantum limit provide fast read-out with spurious-signal rejection